icu_plurals/rules/runtime/
ast.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use crate::rules::reference;
use core::{
    convert::{TryFrom, TryInto},
    fmt, num,
};
use icu_provider::prelude::*;
use zerovec::{
    ule::{tuple::Tuple2ULE, AsULE, UleError, ULE},
    {VarZeroVec, ZeroVec},
};

#[derive(yoke::Yokeable, zerofrom::ZeroFrom, Clone, PartialEq, Debug)]
#[cfg_attr(feature = "datagen", derive(databake::Bake))]
#[cfg_attr(feature = "datagen", databake(path = icu_plurals::rules::runtime::ast))]
#[allow(clippy::exhaustive_structs)] // Reference AST is non-public and this type is stable
pub struct Rule<'data>(pub VarZeroVec<'data, RelationULE>);

#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
#[repr(u8)]
pub(crate) enum AndOr {
    Or,
    And,
}

#[derive(Copy, Clone, Eq, PartialEq, Ord, PartialOrd, Debug)]
#[repr(u8)]
pub(crate) enum Polarity {
    Negative,
    Positive,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Ord, PartialOrd)]
#[repr(u8)]
#[zerovec::make_ule(OperandULE)]
pub(crate) enum Operand {
    N = 0,
    I = 1,
    V = 2,
    W = 3,
    F = 4,
    T = 5,
    C = 6,
    E = 7,
}

#[derive(Clone, Copy, Debug, PartialEq, Eq, Ord, PartialOrd)]
pub(crate) enum RangeOrValue {
    Range(u32, u32),
    Value(u32),
}

#[derive(Clone, Debug, PartialEq, Eq, Ord, PartialOrd)]
#[zerovec::make_varule(RelationULE)]
pub struct Relation<'data> {
    pub(crate) aopo: AndOrPolarityOperand,
    pub(crate) modulo: u32,
    pub(crate) range_list: ZeroVec<'data, RangeOrValue>,
}

#[derive(Copy, Clone, Debug, PartialEq, Eq, Ord, PartialOrd)]
pub(crate) struct AndOrPolarityOperand {
    pub(crate) and_or: AndOr,
    pub(crate) polarity: Polarity,
    pub(crate) operand: Operand,
}

impl fmt::Debug for RelationULE {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.as_relation().fmt(f)
    }
}
/////

impl TryFrom<&reference::ast::Rule> for Rule<'_> {
    type Error = num::TryFromIntError;

    fn try_from(input: &reference::ast::Rule) -> Result<Self, Self::Error> {
        let mut relations: alloc::vec::Vec<Relation> = alloc::vec![];

        for (i_or, and_condition) in input.condition.0.iter().enumerate() {
            for (i_and, relation) in and_condition.0.iter().enumerate() {
                let range_list = relation
                    .range_list
                    .0
                    .iter()
                    .map(|rov| rov.try_into())
                    .collect::<Result<alloc::vec::Vec<_>, _>>()?;

                let and_or = if i_or > 0 && i_and == 0 {
                    AndOr::Or
                } else {
                    AndOr::And
                };

                let aopo = AndOrPolarityOperand {
                    and_or,
                    polarity: relation.operator.into(),
                    operand: relation.expression.operand.into(),
                };

                relations.push(Relation {
                    aopo,
                    modulo: get_modulo(&relation.expression.modulus)?,
                    range_list: ZeroVec::alloc_from_slice(&range_list),
                })
            }
        }

        Ok(Self(VarZeroVec::from(relations.as_slice())))
    }
}

impl From<&Rule<'_>> for reference::ast::Rule {
    fn from(input: &Rule<'_>) -> Self {
        let mut or_conditions: alloc::vec::Vec<reference::ast::AndCondition> = alloc::vec![];
        let mut and_conditions: alloc::vec::Vec<reference::ast::Relation> = alloc::vec![];
        for rel in input.0.iter() {
            let rel = rel.as_relation();
            let list = rel.range_list.iter().map(Into::into).collect();
            let relation = reference::ast::Relation {
                expression: (rel.aopo.operand, rel.modulo).into(),
                operator: rel.aopo.polarity.into(),
                range_list: reference::ast::RangeList(list),
            };

            if rel.aopo.and_or == AndOr::And {
                and_conditions.push(relation);
            } else {
                or_conditions.push(reference::ast::AndCondition(and_conditions));
                and_conditions = alloc::vec![relation];
            }
        }

        if !and_conditions.is_empty() {
            or_conditions.push(reference::ast::AndCondition(and_conditions));
        }

        Self {
            condition: reference::ast::Condition(or_conditions),
            samples: None,
        }
    }
}

impl From<reference::ast::Operator> for Polarity {
    fn from(op: reference::ast::Operator) -> Self {
        match op {
            reference::ast::Operator::Eq => Polarity::Positive,
            reference::ast::Operator::NotEq => Polarity::Negative,
        }
    }
}

impl From<Polarity> for reference::ast::Operator {
    fn from(pol: Polarity) -> Self {
        match pol {
            Polarity::Negative => reference::ast::Operator::NotEq,
            Polarity::Positive => reference::ast::Operator::Eq,
        }
    }
}

impl From<reference::ast::Operand> for Operand {
    fn from(op: reference::ast::Operand) -> Self {
        match op {
            reference::ast::Operand::N => Self::N,
            reference::ast::Operand::I => Self::I,
            reference::ast::Operand::V => Self::V,
            reference::ast::Operand::W => Self::W,
            reference::ast::Operand::F => Self::F,
            reference::ast::Operand::T => Self::T,
            reference::ast::Operand::C => Self::C,
            reference::ast::Operand::E => Self::E,
        }
    }
}

impl From<Operand> for reference::ast::Operand {
    fn from(op: Operand) -> Self {
        match op {
            Operand::N => Self::N,
            Operand::I => Self::I,
            Operand::V => Self::V,
            Operand::W => Self::W,
            Operand::F => Self::F,
            Operand::T => Self::T,
            Operand::C => Self::C,
            Operand::E => Self::E,
        }
    }
}

impl From<(Operand, u32)> for reference::ast::Expression {
    fn from(input: (Operand, u32)) -> Self {
        Self {
            operand: input.0.into(),
            modulus: get_modulus(input.1),
        }
    }
}

fn get_modulo(op: &Option<reference::ast::Value>) -> Result<u32, num::TryFromIntError> {
    if let Some(op) = op {
        u32::try_from(op)
    } else {
        Ok(0)
    }
}

fn get_modulus(input: u32) -> Option<reference::ast::Value> {
    if input == 0 {
        None
    } else {
        Some(input.into())
    }
}

impl TryFrom<&reference::ast::Value> for u32 {
    type Error = num::TryFromIntError;

    fn try_from(v: &reference::ast::Value) -> Result<Self, Self::Error> {
        v.0.try_into()
    }
}

impl From<u32> for reference::ast::Value {
    fn from(input: u32) -> Self {
        Self(input.into())
    }
}

impl TryFrom<&reference::ast::RangeListItem> for RangeOrValue {
    type Error = num::TryFromIntError;

    fn try_from(item: &reference::ast::RangeListItem) -> Result<Self, Self::Error> {
        Ok(match item {
            reference::ast::RangeListItem::Range(range) => {
                RangeOrValue::Range(range.start().try_into()?, range.end().try_into()?)
            }
            reference::ast::RangeListItem::Value(value) => RangeOrValue::Value(value.try_into()?),
        })
    }
}

impl From<RangeOrValue> for reference::ast::RangeListItem {
    fn from(item: RangeOrValue) -> Self {
        match item {
            RangeOrValue::Range(min, max) => Self::Range(min.into()..=max.into()),
            RangeOrValue::Value(value) => Self::Value(value.into()),
        }
    }
}

#[cfg(feature = "datagen")]
impl core::str::FromStr for Rule<'_> {
    type Err = reference::parser::ParseError;

    fn from_str(s: &str) -> Result<Self, Self::Err> {
        let rule = reference::parser::parse(s.as_bytes())?;
        Rule::try_from(&rule).map_err(|_| reference::parser::ParseError::ValueTooLarge)
    }
}

impl fmt::Display for Rule<'_> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let reference = reference::ast::Rule::from(self);
        reference::serialize(&reference, f)
    }
}

impl RelationULE {
    #[inline]
    pub fn as_relation(&self) -> Relation {
        zerofrom::ZeroFrom::zero_from(self)
    }
}

#[derive(Copy, Clone, Hash, PartialEq, Eq, Debug)]
#[repr(transparent)]
pub(crate) struct AndOrPolarityOperandULE(u8);

// Safety (based on the safety checklist on the ULE trait):
//  1. AndOrPolarityOperandULE does not include any uninitialized or padding bytes
//     (achieved by `#[repr(transparent)]` on a type that satisfies this invariant)
/// 2. AndOrPolarityOperandULE is aligned to 1 byte
//     (achieved by `#[repr(transparent)]` on a type that satisfies this invariant)
//  3. The impl of validate_bytes() returns an error if any byte is not valid.
//  4. The impl of validate_bytes() returns an error if there are extra bytes
//     (impossible since it is of size 1 byte)
//  5 The other ULE methods use the default impl.
//  6. AndOrPolarityOperandULE byte equality is semantic equality.
unsafe impl ULE for AndOrPolarityOperandULE {
    fn validate_bytes(bytes: &[u8]) -> Result<(), UleError> {
        for byte in bytes {
            Operand::new_from_u8(byte & 0b0011_1111).ok_or_else(UleError::parse::<Self>)?;
        }
        Ok(())
    }
}

impl AsULE for AndOrPolarityOperand {
    type ULE = AndOrPolarityOperandULE;
    fn to_unaligned(self) -> AndOrPolarityOperandULE {
        let encoded_operand = self.operand.to_unaligned().0;
        debug_assert!(encoded_operand <= 0b0011_1111);
        AndOrPolarityOperandULE(
            (((self.and_or == AndOr::And) as u8) << 7)
                + (((self.polarity == Polarity::Positive) as u8) << 6)
                + encoded_operand,
        )
    }

    fn from_unaligned(other: AndOrPolarityOperandULE) -> Self {
        let encoded = other.0;
        let and_or = if encoded & 0b1000_0000 != 0 {
            AndOr::And
        } else {
            AndOr::Or
        };

        let polarity = if encoded & 0b0100_0000 != 0 {
            Polarity::Positive
        } else {
            Polarity::Negative
        };

        // note that this is unsafe, since OperandULE has its own
        // safety requirements
        // we can guarantee safety here since these bits can only come
        // from validated OperandULEs
        let operand = OperandULE(encoded & 0b0011_1111);
        Self {
            and_or,
            polarity,
            operand: Operand::from_unaligned(operand),
        }
    }
}

type RangeOrValueULE = Tuple2ULE<<u32 as AsULE>::ULE, <u32 as AsULE>::ULE>;

impl AsULE for RangeOrValue {
    type ULE = RangeOrValueULE;

    #[inline]
    fn to_unaligned(self) -> Self::ULE {
        match self {
            Self::Range(start, end) => Tuple2ULE(start.to_unaligned(), end.to_unaligned()),
            Self::Value(idx) => Tuple2ULE(idx.to_unaligned(), idx.to_unaligned()),
        }
    }

    #[inline]
    fn from_unaligned(unaligned: Self::ULE) -> Self {
        let start = u32::from_unaligned(unaligned.0);
        let end = u32::from_unaligned(unaligned.1);
        if start == end {
            Self::Value(start)
        } else {
            Self::Range(start, end)
        }
    }
}

#[cfg(feature = "serde")]
mod serde {
    use super::*;
    use ::serde::{de, ser, Deserialize, Deserializer, Serialize};
    use alloc::{
        format,
        string::{String, ToString},
    };

    impl Serialize for Rule<'_> {
        fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
        where
            S: ser::Serializer,
        {
            if serializer.is_human_readable() {
                let string: String = self.to_string();
                serializer.serialize_str(&string)
            } else {
                serializer.serialize_bytes(self.0.as_bytes())
            }
        }
    }

    struct DeserializeRule;

    impl<'de> de::Visitor<'de> for DeserializeRule {
        type Value = Rule<'de>;

        fn expecting(&self, formatter: &mut fmt::Formatter) -> fmt::Result {
            write!(formatter, "a valid rule.")
        }

        fn visit_borrowed_str<E>(self, rule_string: &'de str) -> Result<Self::Value, E>
        where
            E: de::Error,
        {
            fn from_str(s: &str) -> Result<Rule, reference::parser::ParseError> {
                let rule = reference::parser::parse(s.as_bytes())?;
                Rule::try_from(&rule).map_err(|_| reference::parser::ParseError::ValueTooLarge)
            }

            from_str(rule_string).map_err(|err| {
                de::Error::invalid_value(
                    de::Unexpected::Other(&format!("{err}")),
                    &"a valid UTS 35 rule string",
                )
            })
        }

        fn visit_borrowed_bytes<E>(self, rule_bytes: &'de [u8]) -> Result<Self::Value, E>
        where
            E: de::Error,
        {
            let rule = VarZeroVec::parse_bytes(rule_bytes).map_err(|err| {
                de::Error::invalid_value(
                    de::Unexpected::Other(&format!("{err}")),
                    &"a valid UTS 35 rule byte slice",
                )
            })?;
            Ok(Rule(rule))
        }
    }

    impl<'de: 'data, 'data> Deserialize<'de> for Rule<'data> {
        fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
        where
            D: Deserializer<'de>,
        {
            if deserializer.is_human_readable() {
                deserializer.deserialize_str(DeserializeRule)
            } else {
                deserializer.deserialize_bytes(DeserializeRule)
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use crate::rules::reference;
    use crate::rules::runtime::test_rule;
    use crate::PluralOperands;

    #[test]
    fn simple_rule_test() {
        use reference::ast;

        let input = "i = 1";
        let full_ast = reference::parse(input.as_bytes()).expect("Failed to convert Rule");
        assert_eq!(
            full_ast,
            ast::Rule {
                condition: ast::Condition(vec![ast::AndCondition(vec![ast::Relation {
                    expression: ast::Expression {
                        operand: ast::Operand::I,
                        modulus: None,
                    },
                    operator: ast::Operator::Eq,
                    range_list: ast::RangeList(vec![ast::RangeListItem::Value(ast::Value(1))])
                }])]),
                samples: None,
            }
        );

        let rule = Rule::try_from(&full_ast).expect("Failed to convert Rule");
        let relation = rule
            .0
            .iter()
            .next()
            .expect("Should have a relation")
            .as_relation();
        assert_eq!(
            relation,
            Relation {
                aopo: AndOrPolarityOperand {
                    and_or: AndOr::And,
                    polarity: Polarity::Positive,
                    operand: Operand::I,
                },
                modulo: 0,
                range_list: ZeroVec::new_borrowed(&[RangeOrValue::Value(1).to_unaligned()])
            }
        );

        let fd = fixed_decimal::SignedFixedDecimal::from(1);
        let operands = PluralOperands::from(&fd);
        assert!(test_rule(&rule, &operands),);
    }

    #[test]
    fn complex_rule_test() {
        let input = "n % 10 = 3..4, 9 and n % 100 != 10..19, 70..79, 90..99 or n = 0";
        let ref_rule = reference::parse(input.as_bytes()).expect("Failed to parse Rule");
        let rule = Rule::try_from(&ref_rule).expect("Failed to convert Rule");

        let fd = fixed_decimal::SignedFixedDecimal::from(0);
        let operands = PluralOperands::from(&fd);
        assert!(test_rule(&rule, &operands),);

        let fd = fixed_decimal::SignedFixedDecimal::from(13);
        let operands = PluralOperands::from(&fd);
        assert!(!test_rule(&rule, &operands),);

        let fd = fixed_decimal::SignedFixedDecimal::from(103);
        let operands = PluralOperands::from(&fd);
        assert!(test_rule(&rule, &operands),);

        let fd = fixed_decimal::SignedFixedDecimal::from(113);
        let operands = PluralOperands::from(&fd);
        assert!(!test_rule(&rule, &operands),);

        let fd = fixed_decimal::SignedFixedDecimal::from(178);
        let operands = PluralOperands::from(&fd);
        assert!(!test_rule(&rule, &operands),);

        let fd = fixed_decimal::SignedFixedDecimal::from(0);
        let operands = PluralOperands::from(&fd);
        assert!(test_rule(&rule, &operands),);
    }

    #[test]
    fn complex_rule_ule_roundtrip_test() {
        let input = "n % 10 = 3..4, 9 and n % 100 != 10..19, 70..79, 90..99 or n = 0";

        let ref_rule = reference::parse(input.as_bytes()).unwrap();

        // Create a ZVZ backed Rule from the reference one.
        let rule = Rule::try_from(&ref_rule).expect("Failed to convert Rule");

        // Convert it back to reference Rule and compare.
        assert_eq!(ref_rule, reference::ast::Rule::from(&rule));

        // Verify that the stringified output matches the input.
        assert_eq!(input, rule.to_string(),);
    }

    #[test]
    fn range_or_value_ule_test() {
        let rov = RangeOrValue::Value(1);
        let ule = rov.to_unaligned();
        let ref_bytes = &[1, 0, 0, 0, 1, 0, 0, 0];
        assert_eq!(ULE::slice_as_bytes(&[ule]), *ref_bytes);

        let rov = RangeOrValue::Range(2, 4);
        let ule = rov.to_unaligned();
        let ref_bytes = &[2, 0, 0, 0, 4, 0, 0, 0];
        assert_eq!(ULE::slice_as_bytes(&[ule]), *ref_bytes);
    }

    #[test]
    fn relation_ule_test() {
        let rov = RangeOrValue::Value(1);
        let aopo = AndOrPolarityOperand {
            and_or: AndOr::And,
            polarity: Polarity::Positive,
            operand: Operand::N,
        };
        let relation = Relation {
            aopo,
            modulo: 0,
            range_list: ZeroVec::alloc_from_slice(&[rov]),
        };
        let relations = alloc::vec![relation];
        let vzv = VarZeroVec::<_>::from(relations.as_slice());
        assert_eq!(
            vzv.as_bytes(),
            &[1, 0, 192, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0]
        );
    }
}