icu_segmenter/complex/lstm/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use crate::grapheme::GraphemeClusterSegmenter;
use crate::provider::*;
use alloc::vec::Vec;
use core::char::{decode_utf16, REPLACEMENT_CHARACTER};
use potential_utf::PotentialUtf8;
use zerovec::maps::ZeroMapBorrowed;

mod matrix;
use matrix::*;

// A word break iterator using LSTM model. Input string have to be same language.

struct LstmSegmenterIterator<'s> {
    input: &'s str,
    pos_utf8: usize,
    bies: BiesIterator<'s>,
}

impl Iterator for LstmSegmenterIterator<'_> {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        #[allow(clippy::indexing_slicing)] // pos_utf8 in range
        loop {
            let is_e = self.bies.next()?;
            self.pos_utf8 += self.input[self.pos_utf8..].chars().next()?.len_utf8();
            if is_e || self.bies.len() == 0 {
                return Some(self.pos_utf8);
            }
        }
    }
}

struct LstmSegmenterIteratorUtf16<'s> {
    bies: BiesIterator<'s>,
    pos: usize,
}

impl Iterator for LstmSegmenterIteratorUtf16<'_> {
    type Item = usize;

    fn next(&mut self) -> Option<Self::Item> {
        loop {
            self.pos += 1;
            if self.bies.next()? || self.bies.len() == 0 {
                return Some(self.pos);
            }
        }
    }
}

pub(super) struct LstmSegmenter<'l> {
    dic: ZeroMapBorrowed<'l, PotentialUtf8, u16>,
    embedding: MatrixZero<'l, 2>,
    fw_w: MatrixZero<'l, 3>,
    fw_u: MatrixZero<'l, 3>,
    fw_b: MatrixZero<'l, 2>,
    bw_w: MatrixZero<'l, 3>,
    bw_u: MatrixZero<'l, 3>,
    bw_b: MatrixZero<'l, 2>,
    timew_fw: MatrixZero<'l, 2>,
    timew_bw: MatrixZero<'l, 2>,
    time_b: MatrixZero<'l, 1>,
    grapheme: Option<&'l RuleBreakDataV2<'l>>,
}

impl<'l> LstmSegmenter<'l> {
    /// Returns `Err` if grapheme data is required but not present
    pub(super) fn new(lstm: &'l LstmDataV1<'l>, grapheme: &'l RuleBreakDataV2<'l>) -> Self {
        let LstmDataV1::Float32(lstm) = lstm;
        let time_w = MatrixZero::from(&lstm.time_w);
        #[allow(clippy::unwrap_used)] // shape (2, 4, hunits)
        let timew_fw = time_w.submatrix(0).unwrap();
        #[allow(clippy::unwrap_used)] // shape (2, 4, hunits)
        let timew_bw = time_w.submatrix(1).unwrap();
        Self {
            dic: lstm.dic.as_borrowed(),
            embedding: MatrixZero::from(&lstm.embedding),
            fw_w: MatrixZero::from(&lstm.fw_w),
            fw_u: MatrixZero::from(&lstm.fw_u),
            fw_b: MatrixZero::from(&lstm.fw_b),
            bw_w: MatrixZero::from(&lstm.bw_w),
            bw_u: MatrixZero::from(&lstm.bw_u),
            bw_b: MatrixZero::from(&lstm.bw_b),
            timew_fw,
            timew_bw,
            time_b: MatrixZero::from(&lstm.time_b),
            grapheme: (lstm.model == ModelType::GraphemeClusters).then_some(grapheme),
        }
    }

    /// Create an LSTM based break iterator for an `str` (a UTF-8 string).
    pub(super) fn segment_str(&'l self, input: &'l str) -> impl Iterator<Item = usize> + 'l {
        self.segment_str_p(input)
    }

    // For unit testing as we cannot inspect the opaque type's bies
    fn segment_str_p(&'l self, input: &'l str) -> LstmSegmenterIterator<'l> {
        let input_seq = if let Some(grapheme) = self.grapheme {
            GraphemeClusterSegmenter::new_and_segment_str(input, grapheme)
                .collect::<Vec<usize>>()
                .windows(2)
                .map(|chunk| {
                    let range = if let [first, second, ..] = chunk {
                        *first..*second
                    } else {
                        unreachable!()
                    };
                    let grapheme_cluster = if let Some(grapheme_cluster) = input.get(range) {
                        grapheme_cluster
                    } else {
                        return self.dic.len() as u16;
                    };

                    self.dic
                        .get_copied(PotentialUtf8::from_str(grapheme_cluster))
                        .unwrap_or_else(|| self.dic.len() as u16)
                })
                .collect()
        } else {
            input
                .chars()
                .map(|c| {
                    self.dic
                        .get_copied(PotentialUtf8::from_str(c.encode_utf8(&mut [0; 4])))
                        .unwrap_or_else(|| self.dic.len() as u16)
                })
                .collect()
        };
        LstmSegmenterIterator {
            input,
            pos_utf8: 0,
            bies: BiesIterator::new(self, input_seq),
        }
    }

    /// Create an LSTM based break iterator for a UTF-16 string.
    pub(super) fn segment_utf16(&'l self, input: &[u16]) -> impl Iterator<Item = usize> + 'l {
        let input_seq = if let Some(grapheme) = self.grapheme {
            GraphemeClusterSegmenter::new_and_segment_utf16(input, grapheme)
                .collect::<Vec<usize>>()
                .windows(2)
                .map(|chunk| {
                    let range = if let [first, second, ..] = chunk {
                        *first..*second
                    } else {
                        unreachable!()
                    };
                    let grapheme_cluster = if let Some(grapheme_cluster) = input.get(range) {
                        grapheme_cluster
                    } else {
                        return self.dic.len() as u16;
                    };

                    self.dic
                        .get_copied_by(|key| {
                            key.as_bytes().iter().copied().cmp(
                                decode_utf16(grapheme_cluster.iter().copied()).flat_map(|c| {
                                    let mut buf = [0; 4];
                                    let len = c
                                        .unwrap_or(REPLACEMENT_CHARACTER)
                                        .encode_utf8(&mut buf)
                                        .len();
                                    buf.into_iter().take(len)
                                }),
                            )
                        })
                        .unwrap_or_else(|| self.dic.len() as u16)
                })
                .collect()
        } else {
            decode_utf16(input.iter().copied())
                .map(|c| c.unwrap_or(REPLACEMENT_CHARACTER))
                .map(|c| {
                    self.dic
                        .get_copied(PotentialUtf8::from_str(c.encode_utf8(&mut [0; 4])))
                        .unwrap_or_else(|| self.dic.len() as u16)
                })
                .collect()
        };
        LstmSegmenterIteratorUtf16 {
            bies: BiesIterator::new(self, input_seq),
            pos: 0,
        }
    }
}

struct BiesIterator<'l> {
    segmenter: &'l LstmSegmenter<'l>,
    input_seq: core::iter::Enumerate<alloc::vec::IntoIter<u16>>,
    h_bw: MatrixOwned<2>,
    curr_fw: MatrixOwned<1>,
    c_fw: MatrixOwned<1>,
}

impl<'l> BiesIterator<'l> {
    // input_seq is a sequence of id numbers that represents grapheme clusters or code points in the input line. These ids are used later
    // in the embedding layer of the model.
    fn new(segmenter: &'l LstmSegmenter<'l>, input_seq: Vec<u16>) -> Self {
        let hunits = segmenter.fw_u.dim().1;

        // Backward LSTM
        let mut c_bw = MatrixOwned::<1>::new_zero([hunits]);
        let mut h_bw = MatrixOwned::<2>::new_zero([input_seq.len(), hunits]);
        for (i, &g_id) in input_seq.iter().enumerate().rev() {
            if i + 1 < input_seq.len() {
                h_bw.as_mut().copy_submatrix::<1>(i + 1, i);
            }
            #[allow(clippy::unwrap_used)]
            compute_hc(
                segmenter.embedding.submatrix::<1>(g_id as usize).unwrap(), /* shape (dict.len() + 1, hunit), g_id is at most dict.len() */
                h_bw.submatrix_mut(i).unwrap(), // shape (input_seq.len(), hunits)
                c_bw.as_mut(),
                segmenter.bw_w,
                segmenter.bw_u,
                segmenter.bw_b,
            );
        }

        Self {
            input_seq: input_seq.into_iter().enumerate(),
            h_bw,
            c_fw: MatrixOwned::<1>::new_zero([hunits]),
            curr_fw: MatrixOwned::<1>::new_zero([hunits]),
            segmenter,
        }
    }
}

impl ExactSizeIterator for BiesIterator<'_> {
    fn len(&self) -> usize {
        self.input_seq.len()
    }
}

impl Iterator for BiesIterator<'_> {
    type Item = bool;

    fn next(&mut self) -> Option<Self::Item> {
        let (i, g_id) = self.input_seq.next()?;

        #[allow(clippy::unwrap_used)]
        compute_hc(
            self.segmenter
                .embedding
                .submatrix::<1>(g_id as usize)
                .unwrap(), // shape (dict.len() + 1, hunit), g_id is at most dict.len()
            self.curr_fw.as_mut(),
            self.c_fw.as_mut(),
            self.segmenter.fw_w,
            self.segmenter.fw_u,
            self.segmenter.fw_b,
        );

        #[allow(clippy::unwrap_used)] // shape (input_seq.len(), hunits)
        let curr_bw = self.h_bw.submatrix::<1>(i).unwrap();
        let mut weights = [0.0; 4];
        let mut curr_est = MatrixBorrowedMut {
            data: &mut weights,
            dims: [4],
        };
        curr_est.add_dot_2d(self.curr_fw.as_borrowed(), self.segmenter.timew_fw);
        curr_est.add_dot_2d(curr_bw, self.segmenter.timew_bw);
        #[allow(clippy::unwrap_used)] // both shape (4)
        curr_est.add(self.segmenter.time_b).unwrap();
        // For correct BIES weight calculation we'd now have to apply softmax, however
        // we're only doing a naive argmax, so a monotonic function doesn't make a difference.

        Some(weights[2] > weights[0] && weights[2] > weights[1] && weights[2] > weights[3])
    }
}

/// `compute_hc1` implemens the evaluation of one LSTM layer.
fn compute_hc<'a>(
    x_t: MatrixZero<'a, 1>,
    mut h_tm1: MatrixBorrowedMut<'a, 1>,
    mut c_tm1: MatrixBorrowedMut<'a, 1>,
    w: MatrixZero<'a, 3>,
    u: MatrixZero<'a, 3>,
    b: MatrixZero<'a, 2>,
) {
    #[cfg(debug_assertions)]
    {
        let hunits = h_tm1.dim();
        let embedd_dim = x_t.dim();
        c_tm1.as_borrowed().debug_assert_dims([hunits]);
        w.debug_assert_dims([4, hunits, embedd_dim]);
        u.debug_assert_dims([4, hunits, hunits]);
        b.debug_assert_dims([4, hunits]);
    }

    let mut s_t = b.to_owned();

    s_t.as_mut().add_dot_3d_2(x_t, w);
    s_t.as_mut().add_dot_3d_1(h_tm1.as_borrowed(), u);

    #[allow(clippy::unwrap_used)] // first dimension is 4
    s_t.submatrix_mut::<1>(0).unwrap().sigmoid_transform();
    #[allow(clippy::unwrap_used)] // first dimension is 4
    s_t.submatrix_mut::<1>(1).unwrap().sigmoid_transform();
    #[allow(clippy::unwrap_used)] // first dimension is 4
    s_t.submatrix_mut::<1>(2).unwrap().tanh_transform();
    #[allow(clippy::unwrap_used)] // first dimension is 4
    s_t.submatrix_mut::<1>(3).unwrap().sigmoid_transform();

    #[allow(clippy::unwrap_used)] // first dimension is 4
    c_tm1.convolve(
        s_t.as_borrowed().submatrix(0).unwrap(),
        s_t.as_borrowed().submatrix(2).unwrap(),
        s_t.as_borrowed().submatrix(1).unwrap(),
    );

    #[allow(clippy::unwrap_used)] // first dimension is 4
    h_tm1.mul_tanh(s_t.as_borrowed().submatrix(3).unwrap(), c_tm1.as_borrowed());
}

#[cfg(test)]
mod tests {
    use super::*;
    use icu_provider::prelude::*;
    use serde::Deserialize;

    /// `TestCase` is a struct used to store a single test case.
    /// Each test case has two attributes: `unseg` which denotes the unsegmented line, and `true_bies` which indicates the Bies
    /// sequence representing the true segmentation.
    #[derive(PartialEq, Debug, Deserialize)]
    struct TestCase {
        unseg: String,
        expected_bies: String,
        true_bies: String,
    }

    /// `TestTextData` is a struct to store a vector of `TestCase` that represents a test text.
    #[derive(PartialEq, Debug, Deserialize)]
    struct TestTextData {
        testcases: Vec<TestCase>,
    }

    #[derive(Debug)]
    struct TestText {
        data: TestTextData,
    }

    #[test]
    fn segment_file_by_lstm() {
        let lstm: DataResponse<LstmForWordLineAutoV1Marker> = crate::provider::Baked
            .load(DataRequest {
                id: DataIdentifierBorrowed::for_marker_attributes(
                    DataMarkerAttributes::from_str_or_panic(
                        "Thai_codepoints_exclusive_model4_heavy",
                    ),
                ),
                ..Default::default()
            })
            .unwrap();
        let lstm = LstmSegmenter::new(
            lstm.payload.get(),
            crate::provider::Baked::SINGLETON_GRAPHEME_CLUSTER_BREAK_DATA_V2_MARKER,
        );

        // Importing the test data
        let test_text_data = serde_json::from_str(if lstm.grapheme.is_some() {
            include_str!("../../../tests/testdata/test_text_graphclust.json")
        } else {
            include_str!("../../../tests/testdata/test_text_codepoints.json")
        })
        .expect("JSON syntax error");
        let test_text = TestText {
            data: test_text_data,
        };

        // Testing
        for test_case in &test_text.data.testcases {
            let lstm_output = lstm
                .segment_str_p(&test_case.unseg)
                .bies
                .map(|is_e| if is_e { 'e' } else { '?' })
                .collect::<String>();
            println!("Test case      : {}", test_case.unseg);
            println!("Expected bies  : {}", test_case.expected_bies);
            println!("Estimated bies : {lstm_output}");
            println!("True bies      : {}", test_case.true_bies);
            println!("****************************************************");
            assert_eq!(
                test_case.expected_bies.replace(['b', 'i', 's'], "?"),
                lstm_output
            );
        }
    }
}