1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
use core::cmp::Ordering;
use core::fmt;
/// A 24-bit numeric data type that is expected to be a Unicode scalar value, but is not
/// validated as such.
///
/// Use this type instead of `char` when you want to deal with data that is expected to be valid
/// Unicode scalar values, but you want control over when or if you validate that assumption.
///
/// # Examples
///
/// ```
/// use potential_utf::PotentialCodePoint;
///
/// assert_eq!(PotentialCodePoint::from_u24(0x68).try_to_char(), Ok('h'));
/// assert_eq!(PotentialCodePoint::from_char('i').try_to_char(), Ok('i'));
/// assert_eq!(PotentialCodePoint::from_u24(0x1F44B).try_to_char(), Ok('👋'));
///
/// assert!(PotentialCodePoint::from_u24(0xDE01).try_to_char().is_err());
/// assert_eq!(PotentialCodePoint::from_u24(0xDE01).to_char_lossy(), char::REPLACEMENT_CHARACTER);
/// ```
#[repr(transparent)]
#[allow(clippy::exhaustive_structs)] // transparent newtype
#[derive(PartialEq, Eq, Clone, Copy, Hash)]
pub struct PotentialCodePoint([u8; 3]);
impl PotentialCodePoint {
/// Create a [`PotentialCodePoint`] from a `char`.
///
/// # Examples
///
/// ```
/// use potential_utf::PotentialCodePoint;
///
/// let a = PotentialCodePoint::from_char('a');
/// assert_eq!(a.try_to_char().unwrap(), 'a');
/// ```
#[inline]
pub const fn from_char(c: char) -> Self {
let [u0, u1, u2, _u3] = (c as u32).to_le_bytes();
Self([u0, u1, u2])
}
/// Create [`PotentialCodePoint`] from a u32 value, ignoring the most significant 8 bits.
#[inline]
pub const fn from_u24(c: u32) -> Self {
let [u0, u1, u2, _u3] = c.to_le_bytes();
Self([u0, u1, u2])
}
/// Attempt to convert a [`PotentialCodePoint`] to a `char`.
///
/// # Examples
///
/// ```
/// use potential_utf::PotentialCodePoint;
/// use zerovec::ule::AsULE;
///
/// let a = PotentialCodePoint::from_char('a');
/// assert_eq!(a.try_to_char(), Ok('a'));
///
/// let b = PotentialCodePoint::from_unaligned([0xFF, 0xFF, 0xFF].into());
/// assert!(matches!(b.try_to_char(), Err(_)));
/// ```
#[inline]
pub fn try_to_char(self) -> Result<char, core::char::CharTryFromError> {
char::try_from(u32::from(self))
}
/// Convert a [`PotentialCodePoint`] to a `char', returning [`char::REPLACEMENT_CHARACTER`]
/// if the `PotentialCodePoint` does not represent a valid Unicode scalar value.
///
/// # Examples
///
/// ```
/// use potential_utf::PotentialCodePoint;
/// use zerovec::ule::AsULE;
///
/// let a = PotentialCodePoint::from_unaligned([0xFF, 0xFF, 0xFF].into());
/// assert_eq!(a.to_char_lossy(), char::REPLACEMENT_CHARACTER);
/// ```
#[inline]
pub fn to_char_lossy(self) -> char {
self.try_to_char().unwrap_or(char::REPLACEMENT_CHARACTER)
}
/// Convert a [`PotentialCodePoint`] to a `char` without checking that it is
/// a valid Unicode scalar value.
///
/// # Safety
///
/// The `PotentialCodePoint` must be a valid Unicode scalar value in little-endian order.
///
/// # Examples
///
/// ```
/// use potential_utf::PotentialCodePoint;
///
/// let a = PotentialCodePoint::from_char('a');
/// assert_eq!(unsafe { a.to_char_unchecked() }, 'a');
/// ```
#[inline]
pub unsafe fn to_char_unchecked(self) -> char {
char::from_u32_unchecked(u32::from(self))
}
/// For converting to the ULE type in a const context
///
/// Can be removed once const traits are a thing
#[inline]
#[cfg(feature = "zerovec")]
pub const fn to_unaligned(self) -> zerovec::ule::RawBytesULE<3> {
zerovec::ule::RawBytesULE(self.0)
}
}
/// This impl requires enabling the optional `zerovec` Cargo feature
#[cfg(feature = "zerovec")]
impl zerovec::ule::AsULE for PotentialCodePoint {
type ULE = zerovec::ule::RawBytesULE<3>;
#[inline]
fn to_unaligned(self) -> Self::ULE {
zerovec::ule::RawBytesULE(self.0)
}
#[inline]
fn from_unaligned(unaligned: Self::ULE) -> Self {
Self(unaligned.0)
}
}
// Safety: PotentialCodePoint is always the little-endian representation of a char,
// which corresponds to its AsULE::ULE type
/// This impl requires enabling the optional `zerovec` Cargo feature
#[cfg(feature = "zerovec")]
unsafe impl zerovec::ule::EqULE for PotentialCodePoint {}
impl fmt::Debug for PotentialCodePoint {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
// Debug as a char if possible
match self.try_to_char() {
Ok(c) => fmt::Debug::fmt(&c, f),
Err(_) => fmt::Debug::fmt(&self.0, f),
}
}
}
impl PartialOrd for PotentialCodePoint {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
Some(self.cmp(other))
}
}
impl Ord for PotentialCodePoint {
// custom implementation, as derived Ord would compare lexicographically
fn cmp(&self, other: &Self) -> Ordering {
let a = u32::from(*self);
let b = u32::from(*other);
a.cmp(&b)
}
}
impl From<PotentialCodePoint> for u32 {
fn from(x: PotentialCodePoint) -> Self {
let [a0, a1, a2] = x.0;
u32::from_le_bytes([a0, a1, a2, 0])
}
}
impl TryFrom<u32> for PotentialCodePoint {
type Error = ();
fn try_from(x: u32) -> Result<Self, ()> {
let [u0, u1, u2, u3] = x.to_le_bytes();
if u3 != 0 {
return Err(());
}
Ok(Self([u0, u1, u2]))
}
}
impl From<char> for PotentialCodePoint {
#[inline]
fn from(value: char) -> Self {
Self::from_char(value)
}
}
impl TryFrom<PotentialCodePoint> for char {
type Error = core::char::CharTryFromError;
#[inline]
fn try_from(value: PotentialCodePoint) -> Result<char, Self::Error> {
value.try_to_char()
}
}
/// This impl requires enabling the optional `serde` Cargo feature
#[cfg(feature = "serde")]
impl serde::Serialize for PotentialCodePoint {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
use serde::ser::Error;
let c = self
.try_to_char()
.map_err(|_| S::Error::custom("invalid Unicode scalar value in PotentialCodePoint"))?;
if serializer.is_human_readable() {
serializer.serialize_char(c)
} else {
self.0.serialize(serializer)
}
}
}
/// This impl requires enabling the optional `serde` Cargo feature
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for PotentialCodePoint {
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
if deserializer.is_human_readable() {
let c = <char>::deserialize(deserializer)?;
Ok(PotentialCodePoint::from_char(c))
} else {
let bytes = <[u8; 3]>::deserialize(deserializer)?;
Ok(PotentialCodePoint(bytes))
}
}
}
/// This impl requires enabling the optional `databake` Cargo feature
#[cfg(feature = "databake")]
impl databake::Bake for PotentialCodePoint {
fn bake(&self, env: &databake::CrateEnv) -> databake::TokenStream {
match self.try_to_char() {
Ok(ch) => {
env.insert("potential_utf");
let ch = ch.bake(env);
databake::quote! {
potential_utf::PotentialCodePoint::from_char(#ch)
}
}
Err(_) => {
env.insert("potential_utf");
let u24 = u32::from_le_bytes([self.0[0], self.0[1], self.0[2], 0]);
databake::quote! {
potential_utf::PotentialCodePoint::from_u24(#u24)
}
}
}
}
}
#[cfg(test)]
mod test {
use super::*;
use zerovec::ZeroVec;
#[test]
fn test_serde_fail() {
let uc = PotentialCodePoint([0xFF, 0xFF, 0xFF]);
serde_json::to_string(&uc).expect_err("serialize invalid char bytes");
bincode::serialize(&uc).expect_err("serialize invalid char bytes");
}
#[test]
fn test_serde_json() {
let c = '🙃';
let uc = PotentialCodePoint::from_char(c);
let json_ser = serde_json::to_string(&uc).unwrap();
assert_eq!(json_ser, r#""🙃""#);
let json_de: PotentialCodePoint = serde_json::from_str(&json_ser).unwrap();
assert_eq!(uc, json_de);
}
#[test]
fn test_serde_bincode() {
let c = '🙃';
let uc = PotentialCodePoint::from_char(c);
let bytes_ser = bincode::serialize(&uc).unwrap();
assert_eq!(bytes_ser, [0x43, 0xF6, 0x01]);
let bytes_de: PotentialCodePoint = bincode::deserialize(&bytes_ser).unwrap();
assert_eq!(uc, bytes_de);
}
#[test]
fn test_representation() {
let chars = ['w', 'ω', '文', '𑄃', '🙃'];
// backed by [PotentialCodePoint]
let uvchars: Vec<_> = chars
.iter()
.copied()
.map(PotentialCodePoint::from_char)
.collect();
// backed by [RawBytesULE<3>]
let zvec: ZeroVec<_> = uvchars.clone().into_iter().collect();
let ule_bytes = zvec.as_bytes();
let uvbytes;
unsafe {
let ptr = &uvchars[..] as *const _ as *const u8;
uvbytes = core::slice::from_raw_parts(ptr, ule_bytes.len());
}
// PotentialCodePoint is defined as little-endian, so this must be true on all platforms
// also asserts that to_unaligned/from_unaligned are no-ops
assert_eq!(uvbytes, ule_bytes);
assert_eq!(
&[119, 0, 0, 201, 3, 0, 135, 101, 0, 3, 17, 1, 67, 246, 1],
ule_bytes
);
}
#[test]
fn test_char_bake() {
databake::test_bake!(
PotentialCodePoint,
const,
crate::PotentialCodePoint::from_char('b'),
potential_utf
);
// surrogate code point
databake::test_bake!(
PotentialCodePoint,
const,
crate::PotentialCodePoint::from_u24(55296u32),
potential_utf
);
}
}