1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use core::cmp::Ordering;
use core::fmt;

/// A 24-bit numeric data type that is expected to be a Unicode scalar value, but is not
/// validated as such.
///
/// Use this type instead of `char` when you want to deal with data that is expected to be valid
/// Unicode scalar values, but you want control over when or if you validate that assumption.
///
/// # Examples
///
/// ```
/// use potential_utf::PotentialCodePoint;
///
/// assert_eq!(PotentialCodePoint::from_u24(0x68).try_to_char(), Ok('h'));
/// assert_eq!(PotentialCodePoint::from_char('i').try_to_char(), Ok('i'));
/// assert_eq!(
///     PotentialCodePoint::from_u24(0x1F44B).try_to_char(),
///     Ok('👋')
/// );
///
/// assert!(PotentialCodePoint::from_u24(0xDE01).try_to_char().is_err());
/// assert_eq!(
///     PotentialCodePoint::from_u24(0xDE01).to_char_lossy(),
///     char::REPLACEMENT_CHARACTER
/// );
/// ```
#[repr(transparent)]
#[allow(clippy::exhaustive_structs)] // transparent newtype
#[derive(PartialEq, Eq, Clone, Copy, Hash)]
pub struct PotentialCodePoint([u8; 3]);

impl PotentialCodePoint {
    /// Create a [`PotentialCodePoint`] from a `char`.
    ///
    /// # Examples
    ///
    /// ```
    /// use potential_utf::PotentialCodePoint;
    ///
    /// let a = PotentialCodePoint::from_char('a');
    /// assert_eq!(a.try_to_char().unwrap(), 'a');
    /// ```
    #[inline]
    pub const fn from_char(c: char) -> Self {
        let [u0, u1, u2, _u3] = (c as u32).to_le_bytes();
        Self([u0, u1, u2])
    }

    /// Create [`PotentialCodePoint`] from a u32 value, ignoring the most significant 8 bits.
    #[inline]
    pub const fn from_u24(c: u32) -> Self {
        let [u0, u1, u2, _u3] = c.to_le_bytes();
        Self([u0, u1, u2])
    }

    /// Attempt to convert a [`PotentialCodePoint`] to a `char`.
    ///
    /// # Examples
    ///
    /// ```
    /// use potential_utf::PotentialCodePoint;
    /// use zerovec::ule::AsULE;
    ///
    /// let a = PotentialCodePoint::from_char('a');
    /// assert_eq!(a.try_to_char(), Ok('a'));
    ///
    /// let b = PotentialCodePoint::from_unaligned([0xFF, 0xFF, 0xFF].into());
    /// assert!(matches!(b.try_to_char(), Err(_)));
    /// ```
    #[inline]
    pub fn try_to_char(self) -> Result<char, core::char::CharTryFromError> {
        char::try_from(u32::from(self))
    }

    /// Convert a [`PotentialCodePoint`] to a `char', returning [`char::REPLACEMENT_CHARACTER`]
    /// if the `PotentialCodePoint` does not represent a valid Unicode scalar value.
    ///
    /// # Examples
    ///
    /// ```
    /// use potential_utf::PotentialCodePoint;
    /// use zerovec::ule::AsULE;
    ///
    /// let a = PotentialCodePoint::from_unaligned([0xFF, 0xFF, 0xFF].into());
    /// assert_eq!(a.to_char_lossy(), char::REPLACEMENT_CHARACTER);
    /// ```
    #[inline]
    pub fn to_char_lossy(self) -> char {
        self.try_to_char().unwrap_or(char::REPLACEMENT_CHARACTER)
    }

    /// Convert a [`PotentialCodePoint`] to a `char` without checking that it is
    /// a valid Unicode scalar value.
    ///
    /// # Safety
    ///
    /// The `PotentialCodePoint` must be a valid Unicode scalar value in little-endian order.
    ///
    /// # Examples
    ///
    /// ```
    /// use potential_utf::PotentialCodePoint;
    ///
    /// let a = PotentialCodePoint::from_char('a');
    /// assert_eq!(unsafe { a.to_char_unchecked() }, 'a');
    /// ```
    #[inline]
    pub unsafe fn to_char_unchecked(self) -> char {
        char::from_u32_unchecked(u32::from(self))
    }

    /// For converting to the ULE type in a const context
    ///
    /// Can be removed once const traits are a thing
    #[inline]
    #[cfg(feature = "zerovec")]
    pub const fn to_unaligned(self) -> zerovec::ule::RawBytesULE<3> {
        zerovec::ule::RawBytesULE(self.0)
    }
}

/// This impl requires enabling the optional `zerovec` Cargo feature
#[cfg(feature = "zerovec")]
impl zerovec::ule::AsULE for PotentialCodePoint {
    type ULE = zerovec::ule::RawBytesULE<3>;

    #[inline]
    fn to_unaligned(self) -> Self::ULE {
        zerovec::ule::RawBytesULE(self.0)
    }

    #[inline]
    fn from_unaligned(unaligned: Self::ULE) -> Self {
        Self(unaligned.0)
    }
}

// Safety: PotentialCodePoint is always the little-endian representation of a char,
// which corresponds to its AsULE::ULE type
/// This impl requires enabling the optional `zerovec` Cargo feature
#[cfg(feature = "zerovec")]
unsafe impl zerovec::ule::EqULE for PotentialCodePoint {}

impl fmt::Debug for PotentialCodePoint {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Debug as a char if possible
        match self.try_to_char() {
            Ok(c) => fmt::Debug::fmt(&c, f),
            Err(_) => fmt::Debug::fmt(&self.0, f),
        }
    }
}

impl PartialOrd for PotentialCodePoint {
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        Some(self.cmp(other))
    }
}

impl Ord for PotentialCodePoint {
    // custom implementation, as derived Ord would compare lexicographically
    fn cmp(&self, other: &Self) -> Ordering {
        let a = u32::from(*self);
        let b = u32::from(*other);
        a.cmp(&b)
    }
}

impl From<PotentialCodePoint> for u32 {
    fn from(x: PotentialCodePoint) -> Self {
        let [a0, a1, a2] = x.0;
        u32::from_le_bytes([a0, a1, a2, 0])
    }
}

impl TryFrom<u32> for PotentialCodePoint {
    type Error = ();
    fn try_from(x: u32) -> Result<Self, ()> {
        let [u0, u1, u2, u3] = x.to_le_bytes();
        if u3 != 0 {
            return Err(());
        }
        Ok(Self([u0, u1, u2]))
    }
}

impl From<char> for PotentialCodePoint {
    #[inline]
    fn from(value: char) -> Self {
        Self::from_char(value)
    }
}

impl TryFrom<PotentialCodePoint> for char {
    type Error = core::char::CharTryFromError;

    #[inline]
    fn try_from(value: PotentialCodePoint) -> Result<char, Self::Error> {
        value.try_to_char()
    }
}

/// This impl requires enabling the optional `serde` Cargo feature
#[cfg(feature = "serde")]
impl serde::Serialize for PotentialCodePoint {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        use serde::ser::Error;
        let c = self
            .try_to_char()
            .map_err(|_| S::Error::custom("invalid Unicode scalar value in PotentialCodePoint"))?;
        if serializer.is_human_readable() {
            serializer.serialize_char(c)
        } else {
            self.0.serialize(serializer)
        }
    }
}

/// This impl requires enabling the optional `serde` Cargo feature
#[cfg(feature = "serde")]
impl<'de> serde::Deserialize<'de> for PotentialCodePoint {
    fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
    where
        D: serde::Deserializer<'de>,
    {
        if deserializer.is_human_readable() {
            let c = <char>::deserialize(deserializer)?;
            Ok(PotentialCodePoint::from_char(c))
        } else {
            let bytes = <[u8; 3]>::deserialize(deserializer)?;
            Ok(PotentialCodePoint(bytes))
        }
    }
}

/// This impl requires enabling the optional `databake` Cargo feature
#[cfg(feature = "databake")]
impl databake::Bake for PotentialCodePoint {
    fn bake(&self, env: &databake::CrateEnv) -> databake::TokenStream {
        match self.try_to_char() {
            Ok(ch) => {
                env.insert("potential_utf");
                let ch = ch.bake(env);
                databake::quote! {
                    potential_utf::PotentialCodePoint::from_char(#ch)
                }
            }
            Err(_) => {
                env.insert("potential_utf");
                let u24 = u32::from_le_bytes([self.0[0], self.0[1], self.0[2], 0]);
                databake::quote! {
                    potential_utf::PotentialCodePoint::from_u24(#u24)
                }
            }
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;
    use zerovec::ZeroVec;

    #[test]
    fn test_serde_fail() {
        let uc = PotentialCodePoint([0xFF, 0xFF, 0xFF]);
        serde_json::to_string(&uc).expect_err("serialize invalid char bytes");
        bincode::serialize(&uc).expect_err("serialize invalid char bytes");
    }

    #[test]
    fn test_serde_json() {
        let c = '🙃';
        let uc = PotentialCodePoint::from_char(c);
        let json_ser = serde_json::to_string(&uc).unwrap();

        assert_eq!(json_ser, r#""🙃""#);

        let json_de: PotentialCodePoint = serde_json::from_str(&json_ser).unwrap();

        assert_eq!(uc, json_de);
    }

    #[test]
    fn test_serde_bincode() {
        let c = '🙃';
        let uc = PotentialCodePoint::from_char(c);
        let bytes_ser = bincode::serialize(&uc).unwrap();

        assert_eq!(bytes_ser, [0x43, 0xF6, 0x01]);

        let bytes_de: PotentialCodePoint = bincode::deserialize(&bytes_ser).unwrap();

        assert_eq!(uc, bytes_de);
    }

    #[test]
    fn test_representation() {
        let chars = ['w', 'ω', '文', '𑄃', '🙃'];

        // backed by [PotentialCodePoint]
        let uvchars: Vec<_> = chars
            .iter()
            .copied()
            .map(PotentialCodePoint::from_char)
            .collect();
        // backed by [RawBytesULE<3>]
        let zvec: ZeroVec<_> = uvchars.clone().into_iter().collect();

        let ule_bytes = zvec.as_bytes();
        let uvbytes;
        unsafe {
            let ptr = &uvchars[..] as *const _ as *const u8;
            uvbytes = core::slice::from_raw_parts(ptr, ule_bytes.len());
        }

        // PotentialCodePoint is defined as little-endian, so this must be true on all platforms
        // also asserts that to_unaligned/from_unaligned are no-ops
        assert_eq!(uvbytes, ule_bytes);

        assert_eq!(
            &[119, 0, 0, 201, 3, 0, 135, 101, 0, 3, 17, 1, 67, 246, 1],
            ule_bytes
        );
    }

    #[test]
    fn test_char_bake() {
        databake::test_bake!(
            PotentialCodePoint,
            const,
            crate::PotentialCodePoint::from_char('b'),
            potential_utf
        );
        // surrogate code point
        databake::test_bake!(
            PotentialCodePoint,
            const,
            crate::PotentialCodePoint::from_u24(55296u32),
            potential_utf
        );
    }
}