resb/binary/
serializer.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use std::{
    cell::RefCell,
    cmp::Ordering,
    collections::{BTreeMap, HashMap, HashSet},
    fmt,
    rc::Rc,
};

use crate::bundle::{Key, Resource, ResourceBundle};

use super::{
    header::{BinHeader, BinReprInfo},
    BinIndex, CharsetFamily, Endianness, FormatVersion, ResDescriptor, ResourceReprType,
};

const DATA_FORMAT: &[u8; 4] = b"ResB";
const DATA_VERSION: &[u8; 4] = &[1, 4, 0, 0];
const PADDED_HEADER_SIZE: usize = (core::mem::size_of::<BinHeader>() + 15) & !0xf;
const REPR_INFO_SIZE: usize = core::mem::size_of::<BinReprInfo>();

/// The value of the magic word appearing in the header.
///
/// All versions as of [`FormatVersion::V3_0`] share the same value.
const MAGIC_WORD: &[u8; 2] = &[0xda, 0x27];

/// The size of the characters used in representations of string resources.
const SIZE_OF_STRING_CHAR: u8 = 2;

/// The endianness of the current system.
#[cfg(target_endian = "little")]
const SYSTEM_ENDIANNESS: Endianness = Endianness::Little;

/// The endianness of the current system.
#[cfg(target_endian = "big")]
const SYSTEM_ENDIANNESS: Endianness = Endianness::Big;

/// The `StringResourceData` struct encapsulates information necessary for
/// building string resource representations.
#[derive(Debug)]
struct StringResourceData<'a> {
    /// If this string is a suffix of another string, the full string which
    /// contains it. See [`build_string_data`] for more details.
    ///
    /// [`build_string_data`]: Writer::build_string_data
    containing_string: Option<&'a str>,

    /// The offset of the string within the 16-bit data block.
    offset: u32,

    /// The number of copies of this string which appear in the bundle.
    copy_count: usize,

    /// The number of characters saved by deduplicating and suffix-sharing this
    /// string.
    characters_saved: usize,
}

/// Data necessary for building resource representations by resource type.
#[derive(Debug)]
enum BinResourceTypeData<'a> {
    String {
        /// The string represented by the resource.
        string: &'a str,

        /// A reference to string resource data which can be shared among string
        /// resources with the same represented string.
        data: Rc<RefCell<StringResourceData<'a>>>,
    },
    Array {
        /// Resource data for all children of the array.
        children: Vec<BinResourceData<'a>>,
    },
    Table {
        /// Resource data for all entries of the table.
        map: BTreeMap<Key<'a>, BinResourceData<'a>>,
    },
    Binary {
        /// The binary data represented by the resource.
        binary: &'a [u8],
    },
    Integer,
    IntVector {
        /// The integers contained in the vector.
        int_vector: &'a [u32],
    },
    _Alias,
}

impl std::fmt::Display for BinResourceTypeData<'_> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        // Provide a user-friendly string for the resource type in order to
        // create helpful error messages.
        write!(
            f,
            "{}",
            match self {
                BinResourceTypeData::String { .. } => "String",
                BinResourceTypeData::Array { .. } => "Array",
                BinResourceTypeData::Table { .. } => "Table",
                BinResourceTypeData::Binary { .. } => "Binary",
                BinResourceTypeData::Integer => "Integer",
                BinResourceTypeData::IntVector { .. } => "IntVector",
                BinResourceTypeData::_Alias => "Alias",
            }
        )
    }
}

/// The `BinResourceData` struct maintains data necessary for representing a
/// resource as part of a binary resource bundle.
#[derive(Debug)]
struct BinResourceData<'a> {
    /// The type descriptor for this resource if it has been processed.
    descriptor: Option<ResDescriptor>,

    /// Any per-type data necessary for representing this resource.
    type_data: BinResourceTypeData<'a>,
}

impl<'a> BinResourceData<'a> {
    /// Prepares a new data struct for processing a resource.
    fn new(type_data: BinResourceTypeData<'a>) -> Self {
        Self {
            descriptor: None,
            type_data,
        }
    }
}

impl<'a> From<&'a Resource<'a>> for BinResourceData<'a> {
    fn from(value: &'a Resource<'a>) -> Self {
        match value {
            Resource::String(string) => Self::new(BinResourceTypeData::String {
                string,
                data: Rc::new(RefCell::new(StringResourceData {
                    containing_string: None,
                    offset: 0,
                    copy_count: 0,
                    characters_saved: 0,
                })),
            }),
            Resource::Array(array) => {
                // Build resource data structs for each child in the array.
                let mut children = Vec::new();
                for resource in array {
                    children.push(Self::from(resource));
                }

                Self::new(BinResourceTypeData::Array { children })
            }
            Resource::Table(table) => {
                // Build resource data structs for each entry in the table.
                let map = table
                    .iter()
                    .map(|(key, resource)| (key.clone(), BinResourceData::from(resource)))
                    .collect::<BTreeMap<_, _>>();

                Self::new(BinResourceTypeData::Table { map })
            }
            Resource::Binary(binary) => Self::new(BinResourceTypeData::Binary { binary }),
            Resource::Integer(integer) => Self {
                // Integers are stored as part of the resource descriptor, so no
                // further processing is needed.
                descriptor: Some(ResDescriptor::new(ResourceReprType::Int, (*integer).into())),
                type_data: BinResourceTypeData::Integer,
            },
            Resource::IntVector(int_vector) => {
                Self::new(BinResourceTypeData::IntVector { int_vector })
            }
        }
    }
}

/// The `Serializer` type provides a means of generating a vector of bytes
/// representing a [`ResourceBundle`] in the ICU binary resource bundle
/// format.
#[derive(Debug)]
pub struct Serializer {
    /// The format version for which to generate the binary bundle.
    format_version: FormatVersion,

    /// The count of entries in the largest table in the bundle.
    ///
    /// Used for generating the [`BinIndex`].
    largest_table_entry_count: u32,
}

impl Serializer {
    /// Makes a new write state.
    fn new(format_version: FormatVersion) -> Self {
        Self {
            format_version,
            largest_table_entry_count: 0,
        }
    }

    /// Generates a representation of a [`ResourceBundle`] in the binary
    /// resource bundle format.
    ///
    /// Returns a vector of bytes containing the binary representation on
    /// success.
    pub fn to_bytes(
        bundle: &ResourceBundle,
        keys_in_discovery_order: &[Key],
    ) -> Result<Vec<u8>, BinarySerializerError> {
        // For now, we hardcode the format version value and do not support
        // writing pool bundles.
        let format_version = FormatVersion::V2_0;
        let write_pool_bundle_checksum = false;

        let mut serializer = Self::new(format_version);

        // Walk the resource tree to generate the necessary structures for
        // tracking write state for each resource.
        let mut root = BinResourceData::from(bundle.root());

        // Determine the size of the index. We can't generate the index until
        // we've finished building the rest of the file, but its size is
        // important for creating resource offsets.
        let index_field_count = match format_version {
            // Format version 1.0 does not include an index.
            FormatVersion::V1_0 => 0,
            // Format version 1.1 specifies the index, with fields `field_count`
            // through `largest_table_entry_count`.
            FormatVersion::V1_1 => 5,
            // Format version 1.2 adds the `bundle_attributes` field.
            FormatVersion::V1_2 | FormatVersion::V1_3 => 6,
            // Format version 2.0 adds the `data_16_bit_end` field and, if the
            // bundle is either a pool bundle or uses a pool bundle, the
            // `pool_checksum` field.
            FormatVersion::V2_0 | FormatVersion::V3_0 => {
                if write_pool_bundle_checksum {
                    8
                } else {
                    7
                }
            }
        };

        // The root descriptor is considered to be at offset `0`, so include it
        // in the determination of the offset of the end of the index.
        let index_end = (1 + index_field_count) * std::mem::size_of::<u32>() as u32;

        // Build the key block.
        let mut key_position_map = HashMap::new();
        let keys = serializer.build_key_block(
            &root,
            index_end,
            keys_in_discovery_order,
            &mut key_position_map,
        );
        let keys_end = index_end + keys.len() as u32;

        // Build the 16-bit data block.
        let data_16_bit = serializer.build_16_bit_data_block(&mut root, &key_position_map)?;
        let data_16_bit_end = keys_end + data_16_bit.len() as u32;

        // Build the resource block.
        let resources =
            serializer.build_resource_block(&mut root, data_16_bit_end, &key_position_map)?;
        let resources_end = data_16_bit_end + resources.len() as u32;

        // Build the index now that we know the sizes of all blocks.
        let index = serializer.build_index(
            bundle,
            index_field_count,
            keys_end >> 2,
            resources_end >> 2,
            data_16_bit_end >> 2,
        );

        // Build the final structs for writing.
        let repr_info = BinReprInfo {
            size: REPR_INFO_SIZE as u16,
            reserved_word: 0,
            endianness: SYSTEM_ENDIANNESS,
            charset_family: CharsetFamily::Ascii,
            size_of_char: SIZE_OF_STRING_CHAR,
            reserved_byte: 0,
            data_format: *DATA_FORMAT,
            format_version: serializer.format_version,
            data_version: *DATA_VERSION,
        };

        let header = BinHeader {
            size: PADDED_HEADER_SIZE as u16,
            magic: *MAGIC_WORD,
            repr_info,
        };

        let root_descriptor = root.descriptor.ok_or(BinarySerializerError::unexpected(
            "root descriptor was never populated",
        ))?;
        let bundle_struct = BinResBundle {
            header,
            root_descriptor,
            index,
            keys: &keys,
            data_16_bit: &data_16_bit,
            resources: &resources,
        };

        // Write the bundle as bytes and return.
        Vec::<u8>::try_from(bundle_struct)
    }

    /// Collects the set of keys used in tables.
    fn collect_keys<'a>(resource: &BinResourceTypeData<'a>, collected_keys: &mut HashSet<Key<'a>>) {
        match resource {
            BinResourceTypeData::Table { map } => {
                for (key, resource) in map {
                    collected_keys.insert(key.clone());
                    Self::collect_keys(&resource.type_data, collected_keys);
                }
            }
            BinResourceTypeData::Array { children } => {
                for child in children {
                    Self::collect_keys(&child.type_data, collected_keys);
                }
            }
            _ => (),
        }
    }

    /// Generates a vector of bytes representing the block of table keys.
    ///
    /// Returns the vector of bytes.
    fn build_key_block<'a>(
        &self,
        root: &BinResourceData,
        block_start_position: u32,
        keys_in_discovery_order: &[Key<'a>],
        key_position_map: &mut HashMap<Key<'a>, u32>,
    ) -> Vec<u8> {
        let mut encountered_keys = HashSet::new();
        Self::collect_keys(&root.type_data, &mut encountered_keys);

        // Get the keys sorted in the order we encountered them during parse.
        // While not strictly a part of the specification, ICU4C's `genrb` tool
        // writes keys into the binary bundle in this order and so that behavior
        // is replicated here.
        let sorted_keys = keys_in_discovery_order
            .iter()
            .filter(|&key| encountered_keys.contains(key));

        let mut key_block = Vec::new();
        for key in sorted_keys {
            // Track the position of each key as we insert it for later
            // reference in writing tables.
            key_position_map.insert(key.clone(), block_start_position + key_block.len() as u32);

            // Write keys as null-terminated 8-bit strings.
            key_block.append(&mut key.as_bytes().to_vec());
            key_block.push(0);
        }

        // Pad the key block such that the end is aligned with a 32-bit
        // boundary.
        let padding = (block_start_position as usize + key_block.len()) % 3;
        key_block.resize(key_block.len() + padding, 0xaa);

        key_block
    }

    /// Collects the set of strings appearing in string resources and tracks the
    /// number of copies of each.
    fn collect_strings<'a>(
        resource: &mut BinResourceData<'a>,
        strings: &mut HashMap<&'a str, Rc<RefCell<StringResourceData<'a>>>>,
    ) {
        let mut existing_string_data = None;
        match &mut resource.type_data {
            BinResourceTypeData::String { string, data } => {
                if strings.contains_key(string) {
                    // Record the data struct for the already-encountered copy
                    // of this string so that we can reuse it for this copy. We
                    // want each instance of a string to share a reference to
                    // the same data in order to allow multiple string resources
                    // to share a single set of bytes in the 16-bit data block.
                    // We can't use `if let` here because we need to borrow as
                    // mutable in the `else` case.
                    #[allow(clippy::unwrap_used)]
                    let data = strings.get(string).unwrap();
                    data.borrow_mut().copy_count += 1;
                    existing_string_data = Some((string, data));
                } else {
                    strings.insert(string, data.clone());
                    data.borrow_mut().copy_count += 1;
                }
            }

            // Walk the resource tree.
            BinResourceTypeData::Array { children } => {
                for child in children {
                    Self::collect_strings(child, strings);
                }
            }
            BinResourceTypeData::Table { map, .. } => {
                for resource in map.values_mut() {
                    Self::collect_strings(resource, strings);
                }
            }
            _ => (),
        };

        // We will only have recorded string data for this resource if it is a
        // string resource.
        if let Some((string, data)) = existing_string_data {
            // Ensure that this string resource uses the same data as every
            // string resource with a matching string.
            resource.type_data = BinResourceTypeData::String {
                string,
                data: data.clone(),
            }
        };
    }

    /// Generates a vector of 16-bit values representing the UTF-16 string
    /// resources present in the bundle.
    ///
    /// This builds a block containing all of the string resources in the
    /// bundle, which are compacted by deduplicating strings and reusing the
    /// ends of longer strings when they wholly contain a shorter string
    /// ("suffix").
    fn build_string_data(
        &mut self,
        root: &mut BinResourceData,
        data_16_bit: &mut Vec<u16>,
    ) -> Result<(), BinarySerializerError> {
        let mut strings = HashMap::new();
        Self::collect_strings(root, &mut strings);
        let count = strings.len();

        // Sort the strings such that any suffixes occur immediately after their
        // containing string.
        let mut sorted_strings = strings.keys().cloned().collect::<Vec<_>>();
        sorted_strings.sort_unstable_by(cmp_string_descending_suffix_aware);

        // Locate strings which are suffixes of other strings and link them to
        // their containing string.
        for (i, string) in sorted_strings.iter().enumerate() {
            // We can safely unwrap here as `sorted_strings` is just a sorted
            // list of keys for the map in question.
            #[allow(clippy::unwrap_used)]
            let data = strings.get(string).unwrap();

            if data.borrow().containing_string.is_some() {
                // We've already processed this string as a suffix in the inner
                // loop.
                continue;
            }

            // Calculate the total number of characters saved by deduplicating
            // copies of this string.
            let copy_count = data.borrow().copy_count;
            data.borrow_mut().characters_saved = (copy_count - 1) * get_total_string_size(string)?;

            for suffix in sorted_strings.iter().take(count).skip(i + 1) {
                if !string.ends_with(suffix) {
                    // This string is not a suffix of the preceding string;
                    // because suffixes are sorted immediately after their
                    // containing string, no further strings will be
                    break;
                }

                if get_string_length_marker_size(suffix)? != 0 {
                    // Skip the suffix if it is long enough to require an
                    // explicit length marker, as we can't include those in the
                    // middle of another string.
                    continue;
                }

                // Note the offset of the suffix into its containing string and
                // link the two. We can safely unwrap here as `sorted_strings`
                // are all keys for the map in question.
                #[allow(clippy::unwrap_used)]
                let suffix_data = strings.get(suffix).unwrap();
                suffix_data.borrow_mut().offset =
                    (string.chars().count() - suffix.chars().count()) as u32;
                suffix_data.borrow_mut().containing_string = Some(string);

                // Update the characters saved by the containing string.
                data.borrow_mut().characters_saved +=
                    suffix_data.borrow().copy_count * get_total_string_size(suffix)?;
            }
        }

        // Sort the strings such that suffixes are in ascending length order
        // with suffixes sorted to the end. Additionally, strings which save
        // more characters are sorted earlier in order to maximize space savings
        // in the pool bundle case.
        //
        // Ascending length order allows for the maximum number of strings to be
        // addressable by 16-bit offsets in cases where there are a large number
        // of strings.
        let mut sorted_strings = strings
            .iter()
            .collect::<Vec<(&&str, &Rc<RefCell<StringResourceData>>)>>();
        sorted_strings.sort_unstable_by(cmp_string_ascending_suffix_aware);

        for (string, data) in sorted_strings {
            if data.borrow().containing_string.is_some() {
                // This string is a suffix of another. Because suffixes are
                // sorted to the end, we are guaranteed to have already written
                // the containing string. We can't use `if let` here because we
                // need to borrow as mutable, but we can safely unwrap.
                #[allow(clippy::unwrap_used)]
                let containing_string = data.borrow().containing_string.unwrap();
                let containing_data =
                    strings
                        .get(containing_string)
                        .ok_or(BinarySerializerError::unexpected(
                            "containing string not present in string map",
                        ))?;

                // Update the offset of the suffix from a relative position in
                // the containing string to an absolute position in the 16-bit
                // data block. Ensure that we account for the containing
                // string's length marker.
                let containing_offset = containing_data.borrow().offset
                    + get_string_length_marker_size(containing_string)? as u32;
                data.borrow_mut().offset += containing_offset;

                continue;
            }

            data.borrow_mut().offset = data_16_bit.len() as u32;

            // Build a length marker for the string if one is required.
            let length = string.chars().count();
            let length_words = get_string_length_marker_size(string)?;

            match length_words {
                0 => (),
                1 => data_16_bit.push(0xdc00 & length as u16),
                2 => {
                    data_16_bit.push(0xdfef + (length >> 16) as u16);
                    data_16_bit.push(length as u16);
                }
                3 => {
                    data_16_bit.push(0xdfff);
                    data_16_bit.push((length >> 16) as u16);
                    data_16_bit.push(length as u16);
                }
                _ => return Err(BinarySerializerError::string_too_long(length)),
            };

            // Write the string to the 16-bit data block as UTF-16.
            data_16_bit.append(&mut string.encode_utf16().collect());
            data_16_bit.push(0);
        }

        Ok(())
    }

    /// Generates a vector of 16-bit values representing the string block and
    /// any collections whose contents can be addressed by 16-bit values.
    ///
    /// Returns a 16-bit offset to the resource from the start of the 16-bit
    /// data block if the resource can be stored in the block.
    fn build_16_bit_resource_data(
        &mut self,
        resource: &mut BinResourceData,
        data_16_bit: &mut Vec<u16>,
        key_position_map: &HashMap<Key, u32>,
    ) -> Option<u16> {
        match &mut resource.type_data {
            BinResourceTypeData::String { data, .. } => {
                let string_offset = data.borrow().offset;

                // We've already processed the string resources into 16-bit
                // data. Add resource descriptors to allow 32-bit collections to
                // address them.
                resource.descriptor = Some(ResDescriptor::new(
                    ResourceReprType::StringV2,
                    string_offset,
                ));

                // If this string is addressable by a 16-bit offset, return
                // that offset.
                match string_offset <= u16::MAX as u32 {
                    true => Some(string_offset as u16),
                    false => None,
                }
            }
            BinResourceTypeData::Array { ref mut children } => {
                if children.is_empty() {
                    // We match ICU4C's `genrb` tool in representing empty
                    // arrays as the `Array` type.
                    return None;
                }

                let mut data_16_bit_offsets = Vec::new();
                for child in &mut *children {
                    let offset =
                        self.build_16_bit_resource_data(child, data_16_bit, key_position_map);

                    // If the offset is `None`, it isn't possible to represent
                    // this array as an `Array16`, but we continue to walk the
                    // tree in case any of its children are representable in 16
                    // bits.
                    data_16_bit_offsets.push(offset);
                }

                // If any of this array's children can't be represented as a
                // 16-bit resource, it cannot be represented as an `Array16`.
                let data_16_bit_offsets = data_16_bit_offsets
                    .into_iter()
                    .collect::<Option<Vec<_>>>()?;

                // Write the array as an `Array16` and update the resource data
                // appropriately.
                resource.descriptor = Some(ResDescriptor::new(
                    ResourceReprType::Array16,
                    data_16_bit.len() as u32,
                ));

                data_16_bit.push(children.len() as u16);
                for offset in data_16_bit_offsets {
                    data_16_bit.push(offset);
                }

                None
            }
            BinResourceTypeData::Table { ref mut map, .. } => {
                if map.is_empty() {
                    // We match ICU4C's `genrb` tool in representing empty
                    // tables as the `Table` type.
                    return None;
                }

                let mut data_16_bit_offsets = Vec::new();
                for resource in map.values_mut() {
                    let offset =
                        self.build_16_bit_resource_data(resource, data_16_bit, key_position_map);

                    // If the offset is `None`, it isn't possible to represent
                    // this table as a `Table16`, but we continue to walk the
                    // tree in case any of its children are representable in 16
                    // bits.
                    data_16_bit_offsets.push(offset);
                }

                // If any of this table's children can't be represented as a
                // 16-bit resource, it cannot be represented as a `Table16`.
                let data_16_bit_offsets = data_16_bit_offsets
                    .into_iter()
                    .collect::<Option<Vec<_>>>()?;

                // Update the largest table value as appropriate.
                let size = map.len() as u32;
                self.largest_table_entry_count =
                    std::cmp::max(self.largest_table_entry_count, size);

                // Write the table as a `Table16` and update the resource data
                // appropriately.
                resource.descriptor = Some(ResDescriptor::new(
                    ResourceReprType::Table16,
                    data_16_bit.len() as u32,
                ));

                data_16_bit.push(size as u16);
                for position in key_position_map.values() {
                    data_16_bit.push(*position as u16);
                }
                for descriptor in data_16_bit_offsets {
                    data_16_bit.push(descriptor);
                }

                None
            }
            _ => None,
        }
    }

    /// Generates a vector of bytes representing the 16-bit resource block.
    ///
    /// Returns the vector of bytes on success.
    fn build_16_bit_data_block(
        &mut self,
        root: &mut BinResourceData,
        key_position_map: &HashMap<Key, u32>,
    ) -> Result<Vec<u8>, BinarySerializerError> {
        // Begin the 16-bit data block with a 16-bit `0`. While ICU4C's `genrb`
        // tool does this in order to provide empty 16-bit collections with an
        // appropriate offset, the tool does not actually generate any such
        // collections. We retain this behavior solely for compatibility.
        let mut data_16_bit = vec![0];

        self.build_string_data(root, &mut data_16_bit)?;

        self.build_16_bit_resource_data(root, &mut data_16_bit, key_position_map);

        // Pad the 16-bit data block so that the end aligns with a 32-bit
        // boundary.
        if data_16_bit.len() & 1 != 0 {
            data_16_bit.push(0xaaaa);
        }

        // Reinterpret the 16-bit block as native-endian bytes to ease later
        // writing.
        let data_16_bit = data_16_bit
            .iter()
            .flat_map(|value| value.to_ne_bytes())
            .collect();

        Ok(data_16_bit)
    }

    /// Generates a vector of bytes representing a single 32-bit resource.
    ///
    /// Returns the resource descriptor for the resource on success..
    fn build_32_bit_resource(
        &mut self,
        resource: &mut BinResourceData,
        block_start_position: u32,
        data: &mut Vec<u8>,
        key_position_map: &HashMap<Key, u32>,
    ) -> Result<ResDescriptor, BinarySerializerError> {
        if let Some(descriptor) = resource.descriptor {
            // We've already processed this resource in an earlier step.
            return Ok(descriptor);
        }

        match &mut resource.type_data {
            BinResourceTypeData::Array { children } => {
                if children.is_empty() {
                    return Ok(ResDescriptor::_new_empty(ResourceReprType::Array));
                }

                // Add all child resources to the data and collect their
                // resource descriptors.
                let child_descriptors = children
                    .iter_mut()
                    .map(|child| {
                        self.build_32_bit_resource(
                            child,
                            block_start_position,
                            data,
                            key_position_map,
                        )
                    })
                    .collect::<Result<Vec<_>, BinarySerializerError>>()?;

                // Build a resource descriptor for this array.
                let offset = block_start_position + data.len() as u32;
                resource.descriptor =
                    Some(ResDescriptor::new(ResourceReprType::Array, offset >> 2));

                // Build the array representation.
                let mut vector = (children.len() as u32).to_ne_bytes().to_vec();
                data.append(&mut vector);

                for descriptor in child_descriptors {
                    data.append(&mut u32::from(descriptor).to_ne_bytes().to_vec());
                }
            }
            BinResourceTypeData::Table { map, .. } => {
                if map.is_empty() {
                    return Ok(ResDescriptor::_new_empty(ResourceReprType::Table));
                }

                // Update the largest table value as appropriate.
                let size = map.len() as u32;
                self.largest_table_entry_count =
                    std::cmp::max(self.largest_table_entry_count, size);

                // Add all child resources to the data and collect their
                // resource descriptors.
                let child_descriptors = map
                    .values_mut()
                    .map(|child| {
                        self.build_32_bit_resource(
                            child,
                            block_start_position,
                            data,
                            key_position_map,
                        )
                    })
                    .collect::<Result<Vec<_>, BinarySerializerError>>()?;

                // Build a resource descriptor for this table.
                let offset = block_start_position + data.len() as u32;
                resource.descriptor =
                    Some(ResDescriptor::new(ResourceReprType::Table, offset >> 2));

                // Build the table representation.
                data.append(&mut (map.len() as u16).to_ne_bytes().to_vec());

                for key in map.keys() {
                    let position =
                        key_position_map
                            .get(key)
                            .ok_or(BinarySerializerError::unexpected(
                                "key not present in position map",
                            ))?;
                    data.append(&mut (*position as u16).to_ne_bytes().to_vec());
                }

                // Pad the key listing to end at a 32-bit boundary.
                if map.len() & 1 == 0 {
                    data.resize(data.len() + 2, 0xaa);
                }

                for descriptor in child_descriptors {
                    data.append(&mut u32::from(descriptor).to_ne_bytes().to_vec());
                }
            }
            BinResourceTypeData::Binary { binary } => {
                if binary.is_empty() {
                    return Ok(ResDescriptor::_new_empty(ResourceReprType::Binary));
                }

                // Pad before the start of the binary data such that the number
                // of bytes in the body is divisible by 16.
                let offset = block_start_position as usize + data.len();
                let aligned = (offset + std::mem::size_of::<u32>()) % 16;
                if aligned != 0 {
                    data.resize(data.len() + (16 - aligned), 0xaa);
                }

                // Build a resource descriptor for the binary data.
                let offset = block_start_position + data.len() as u32;
                resource.descriptor =
                    Some(ResDescriptor::new(ResourceReprType::Binary, offset >> 2));

                // Build the binary data representation.
                data.append(&mut (binary.len() as u32).to_ne_bytes().to_vec());
                data.extend_from_slice(binary);
            }
            BinResourceTypeData::IntVector { int_vector } => {
                if int_vector.is_empty() {
                    return Ok(ResDescriptor::_new_empty(ResourceReprType::IntVector));
                }

                // Build a resource descriptor for the vector.
                let offset = block_start_position + data.len() as u32;
                resource.descriptor =
                    Some(ResDescriptor::new(ResourceReprType::IntVector, offset >> 2));

                // Build the vector representation.
                data.append(&mut (int_vector.len() as u32).to_ne_bytes().to_vec());

                for int in *int_vector {
                    data.append(&mut (*int).to_ne_bytes().to_vec());
                }
            }
            BinResourceTypeData::_Alias => todo!(),
            _ => {
                return Err(BinarySerializerError::unexpected(
                    "expected resource to have been processed already",
                ))
            }
        };

        // Pad the resource body to end at a 32-bit boundary.
        let position = block_start_position as usize + data.len();
        let u32_size = std::mem::size_of::<u32>();
        if position % u32_size != 0 {
            data.resize(data.len() + (u32_size - position % u32_size), 0xaa);
        }

        resource.descriptor.ok_or(BinarySerializerError::unexpected(
            "resource descriptor has not been populated",
        ))
    }

    /// Generates a vector of bytes representing the 32-bit resource block.
    ///
    /// Returns the vector of bytes on success.
    fn build_resource_block(
        &mut self,
        root: &mut BinResourceData,
        block_start_position: u32,
        key_position_map: &HashMap<Key, u32>,
    ) -> Result<Vec<u8>, BinarySerializerError> {
        let mut body = Vec::new();
        self.build_32_bit_resource(root, block_start_position, &mut body, key_position_map)?;

        Ok(body)
    }

    /// Generates the index block of the bundle data.
    ///
    /// Returns the final index as a struct.
    fn build_index(
        &self,
        bundle: &ResourceBundle,
        field_count: u32,
        keys_end: u32,
        resources_end: u32,
        data_16_bit_end: u32,
    ) -> BinIndex {
        BinIndex {
            field_count,
            keys_end,
            resources_end,
            bundle_end: resources_end,
            largest_table_entry_count: self.largest_table_entry_count,
            bundle_attributes: Some(!bundle.is_locale_fallback_enabled as u32),
            data_16_bit_end: Some(data_16_bit_end),
            pool_checksum: None,
        }
    }
}

/// Gets the total size of a UTF-16 string in 16-bit characters.
///
/// This count includes the string length marker and a null terminator.
fn get_total_string_size(string: &str) -> Result<usize, BinarySerializerError> {
    Ok(string.chars().count() + get_string_length_marker_size(string)? + 1)
}

/// Gets the size of the length marker of a UTF-16 string in 16-bit characters.
///
/// Strings of no more than 40 characters are terminated with a 16-bit U+0000
/// character, while longer strings are marked with one to three UTF-16 low
/// surrogates to indicate length.`
///
/// For more details, see [`ResourceReprType::StringV2`].
fn get_string_length_marker_size(string: &str) -> Result<usize, BinarySerializerError> {
    let length = match string.chars().count() {
        0..=40 => 0,
        41..=0x3ee => 1,
        0x3ef..=0xf_ffff => 2,
        0x10_0000..=0xffff_ffff => 3,
        length => return Err(BinarySerializerError::string_too_long(length)),
    };

    Ok(length)
}

/// Determines the suffix-aware descending length ordering of two keys.
///
/// When used to sort keys, any key which is wholly contained within the end of
/// another will be sorted immediately after it.
fn _cmp_key_suffix(l: &(usize, &str), r: &(usize, &str)) -> Ordering {
    let (l_pos, l_string) = l;
    let (r_pos, r_string) = r;
    let mut l_iter = l_string.chars();
    let mut r_iter = r_string.chars();

    // Iterate strings in reverse order so that, if one string runs out before
    // non-matching characters are found, it is a suffix of the other.
    while let Some((l_char, r_char)) = l_iter.next_back().zip(r_iter.next_back()) {
        match l_char.cmp(&r_char) {
            Ordering::Equal => (),
            ord => return ord,
        };
    }

    match r_string.chars().count().cmp(&l_string.chars().count()) {
        Ordering::Equal => l_pos.cmp(r_pos),
        ord => ord,
    }
}

/// Determines the suffix-aware ordering of two strings in descending order of
/// length.
///
/// When used to sort strings, any string which is wholly contained within the
/// end of another will be sorted immediately after it. See
/// [`build_string_data`] for more details.
///
/// [`build_string_data`]: Writer::build_string_data
fn cmp_string_descending_suffix_aware(l: &&str, r: &&str) -> Ordering {
    let mut l_iter = l.chars();
    let mut r_iter = r.chars();

    // Iterate strings in reverse order so that, if one string runs out before
    // non-matching characters are found, it is a suffix of the other.
    while let Some((l_char, r_char)) = l_iter.next_back().zip(r_iter.next_back()) {
        match l_char.cmp(&r_char) {
            Ordering::Equal => (),
            ord => return ord,
        }
    }

    // Sort matching strings in descending order of length, such that a suffix
    // sorts after its containing string.
    r.chars().count().cmp(&l.chars().count())
}

/// Determines the suffix-aware ordering of two strings in ascending order of
/// length.
///
/// When used to sort strings, any string which is a suffix of another will be
/// sorted to the end. See [`build_string_data`] for more details.
///
/// [`build_string_data`]: Writer::build_string_data
fn cmp_string_ascending_suffix_aware(
    l: &(&&str, &Rc<RefCell<StringResourceData>>),
    r: &(&&str, &Rc<RefCell<StringResourceData>>),
) -> Ordering {
    let (l, l_data) = l;
    let (r, r_data) = r;
    // If one string is a suffix and the other is not, the suffix should be
    // sorted after in order to guarantee that its containing string will be
    // processed first.
    match (
        l_data.borrow().containing_string,
        r_data.borrow().containing_string,
    ) {
        (Some(_), None) => return Ordering::Greater,
        (None, Some(_)) => return Ordering::Less,
        _ => (),
    };

    // Sort longer strings later.
    match l.chars().count().cmp(&r.chars().count()) {
        Ordering::Equal => (),
        ord => return ord,
    };

    // Strings with more duplicates or matching suffixes are sorted earlier.
    // This allows for maximizing savings in pool bundles. It is otherwise not
    // relevant.
    match r_data
        .borrow()
        .characters_saved
        .cmp(&l_data.borrow().characters_saved)
    {
        Ordering::Equal => (),
        ord => return ord,
    };

    // All other things being equal, resort to lexical sort.
    l.cmp(r)
}

/// The `BinResBundle` struct is designed to mimic the in-memory layout of a
/// binary resource bundle. It is used in constructing byte data for writing.
struct BinResBundle<'a> {
    /// The file header.
    ///
    /// As represented in the byte data, the header is zero-padded such that the
    /// total size of the header in bytes is divisible by 16.
    header: BinHeader,

    /// The resource descriptor for the root resource in the bundle. This is
    /// considered the `0`th 32-bit value in the body for purposes of
    /// resolving offsets.
    root_descriptor: ResDescriptor,

    /// Details of the final layout of the bundle as well as attributes for
    /// resolving resources.
    ///
    /// The index is present from [`FormatVersion::V1_1`] on.
    index: BinIndex,

    /// A block of strings representing keys in table resources.
    ///
    /// Keys are stored as contiguous null-terminated 8-bit strings in the
    /// core encoding of the [`CharsetFamily`] of the bundle.
    keys: &'a [u8],

    /// A block of 16-bit data containing 16-bit resources.
    ///
    /// This block is present from [`FormatVersion::V2_0`] on.
    ///
    /// 16-bit resources consist of UTF-16 string resources and collections
    /// which contain only 16-bit string resources. See
    /// [`ResourceReprType::StringV2`], [`ResourceReprType::Array16`], and
    /// [`ResourceReprType::Table16`] for details on representation.
    data_16_bit: &'a [u8],

    /// A block of resource representations. See [`ResourceReprType`] for
    /// details on the representation of resources.
    resources: &'a [u8],
}

impl TryFrom<BinResBundle<'_>> for Vec<u8> {
    type Error = BinarySerializerError;

    fn try_from(value: BinResBundle<'_>) -> Result<Self, Self::Error> {
        // Manually build the list of bytes to write to the output. There are
        // crates which provide this functionality, but the writing of the body
        // is sufficiently complex as to make the header the only part where
        // an external crate would be convenient, and that's a matter of a small
        // number of bytes, so on balance it's easier to just handle those here.
        let mut bytes = Vec::new();
        bytes.append(&mut Vec::<u8>::from(value.header));

        // Write the body.
        bytes.extend_from_slice(&u32::from(value.root_descriptor).to_ne_bytes());
        bytes.append(&mut Vec::<u8>::try_from(value.index)?);
        bytes.extend_from_slice(value.keys);
        bytes.extend_from_slice(value.data_16_bit);
        bytes.extend_from_slice(value.resources);

        Ok(bytes)
    }
}

impl From<BinHeader> for Vec<u8> {
    fn from(value: BinHeader) -> Self {
        let mut bytes = Vec::with_capacity(value.size as usize);

        bytes.extend_from_slice(&value.size.to_ne_bytes());
        bytes.extend_from_slice(&value.magic);

        let mut data_info_bytes = Vec::<u8>::from(value.repr_info);
        bytes.append(&mut data_info_bytes);

        // Pad the header such that its total size is divisible by 16.
        bytes.resize(PADDED_HEADER_SIZE, 0);

        bytes
    }
}

impl From<BinReprInfo> for Vec<u8> {
    fn from(value: BinReprInfo) -> Self {
        let mut bytes = Vec::with_capacity(value.size as usize);

        bytes.extend_from_slice(&value.size.to_ne_bytes());
        bytes.extend_from_slice(&value.reserved_word.to_ne_bytes());
        bytes.push(value.endianness.into());
        bytes.push(value.charset_family.into());
        bytes.push(value.size_of_char);
        bytes.push(value.reserved_byte);
        bytes.extend_from_slice(&value.data_format);
        bytes.extend_from_slice(&<[u8; 4]>::from(value.format_version));
        bytes.extend_from_slice(&value.data_version);

        bytes
    }
}

impl TryFrom<BinIndex> for Vec<u8> {
    type Error = BinarySerializerError;

    fn try_from(value: BinIndex) -> Result<Self, Self::Error> {
        let mut bytes =
            Vec::with_capacity(value.field_count as usize * core::mem::size_of::<u32>());

        // Format version 1.0 did not include an index and so no bytes should be
        // written.
        if value.field_count >= 5 {
            bytes.extend_from_slice(&value.field_count.to_ne_bytes());
            bytes.extend_from_slice(&value.keys_end.to_ne_bytes());
            bytes.extend_from_slice(&value.resources_end.to_ne_bytes());
            bytes.extend_from_slice(&value.bundle_end.to_ne_bytes());
            bytes.extend_from_slice(&value.largest_table_entry_count.to_ne_bytes());
        }

        if value.field_count >= 6 {
            let bundle_attributes =
                value
                    .bundle_attributes
                    .ok_or(BinarySerializerError::unexpected(
                        "no bundle attributes field provided",
                    ))?;

            bytes.extend_from_slice(&bundle_attributes.to_ne_bytes());
        }

        if value.field_count >= 7 {
            let data_16_bit_end =
                value
                    .data_16_bit_end
                    .ok_or(BinarySerializerError::unexpected(
                        "no 16-bit data end offset provided",
                    ))?;

            bytes.extend_from_slice(&data_16_bit_end.to_ne_bytes());
        }

        if value.field_count >= 8 {
            let pool_checksum = value
                .pool_checksum
                .ok_or(BinarySerializerError::unexpected(
                    "no pool checksum provided",
                ))?;

            bytes.extend_from_slice(&pool_checksum.to_ne_bytes());
        }

        Ok(bytes)
    }
}

impl From<FormatVersion> for [u8; 4] {
    fn from(value: FormatVersion) -> [u8; 4] {
        match value {
            FormatVersion::V1_0 => [1, 0, 0, 0],
            FormatVersion::V1_1 => [1, 1, 0, 0],
            FormatVersion::V1_2 => [1, 2, 0, 0],
            FormatVersion::V1_3 => [1, 3, 0, 0],
            FormatVersion::V2_0 => [2, 0, 0, 0],
            FormatVersion::V3_0 => [3, 0, 0, 0],
        }
    }
}

impl From<ResDescriptor> for u32 {
    fn from(value: ResDescriptor) -> Self {
        ((value.resource_type as u32) << 28) | value.value
    }
}

/// The `Error` type provides basic error handling for serialization of binary
/// resource bundles.
#[derive(Debug)]
pub struct BinarySerializerError {
    kind: ErrorKind,
}

impl BinarySerializerError {
    /// Creates a new error indicating that the input data contains a string
    /// longer than a binary resource bundle can encode.
    pub fn string_too_long(length: usize) -> Self {
        Self {
            kind: ErrorKind::StringTooLong(length),
        }
    }

    /// Creates a new error indicating that an unexpected error has occurred.
    ///
    /// Errors of this type should be programming errors within the writer,
    /// rather than problems with input data.
    pub fn unexpected(message: &'static str) -> Self {
        Self {
            kind: ErrorKind::Unexpected(message),
        }
    }
}

impl fmt::Display for BinarySerializerError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        match self.kind {
            ErrorKind::StringTooLong(length) => write!(
                f,
                "Cannot serialize string of length {length}, maximum is 4,294,967,295 characters"
            ),
            ErrorKind::Unexpected(message) => write!(f, "Unexpected error: {message}"),
        }
    }
}

#[derive(Debug)]
enum ErrorKind {
    StringTooLong(usize),
    Unexpected(&'static str),
}