1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
use crate::ule::{EncodeAsVarULE, UleError, VarULE};
use alloc::boxed::Box;
use core::fmt;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use core::ops::Deref;
use core::ptr::NonNull;
use zerofrom::ZeroFrom;
/// Copy-on-write type that efficiently represents [`VarULE`] types as their bitstream representation.
///
/// The primary use case for [`VarULE`] types is the ability to store complex variable-length datastructures
/// inside variable-length collections like [`crate::VarZeroVec`].
///
/// Underlying this ability is the fact that [`VarULE`] types can be efficiently represented as a flat
/// bytestream.
///
/// In zero-copy cases, sometimes one wishes to unconditionally use this bytestream representation, for example
/// to save stack size. A struct with five `Cow<'a, str>`s is not as stack-efficient as a single `Cow` containing
/// the bytestream representation of, say, `Tuple5VarULE<str, str, str, str, str>`.
///
/// This type helps in this case: It is logically a `Cow<'a, V>`, with some optimizations, that is guaranteed
/// to serialize as a byte stream in machine-readable scenarios.
///
/// During human-readable serialization, it will fall back to the serde impls on `V`, which ought to have
/// a human-readable variant.
pub struct VarZeroCow<'a, V: ?Sized> {
/// Pointer to data
///
/// # Safety Invariants
///
/// 1. This slice must always be valid as a byte slice
/// 2. This slice must represent a valid `V`
/// 3. If `owned` is true, this slice can be freed.
///
/// The slice may NOT have the lifetime of `'a`.
buf: NonNull<[u8]>,
/// The buffer is `Box<[u8]>` if true
owned: bool,
_phantom: PhantomData<(&'a V, Box<V>)>,
}
// This is mostly just a `Cow<[u8]>`, safe to implement Send and Sync on
unsafe impl<'a, V: ?Sized> Send for VarZeroCow<'a, V> {}
unsafe impl<'a, V: ?Sized> Sync for VarZeroCow<'a, V> {}
impl<'a, V: ?Sized> Clone for VarZeroCow<'a, V> {
fn clone(&self) -> Self {
if self.is_owned() {
// This clones the box
let b: Box<[u8]> = self.as_bytes().into();
let b = ManuallyDrop::new(b);
let buf: NonNull<[u8]> = (&**b).into();
Self {
// Invariants upheld:
// 1 & 2: The bytes came from `self` so they're a valid value and byte slice
// 3: This is owned (we cloned it), so we set owned to true.
buf,
owned: true,
_phantom: PhantomData,
}
} else {
// Unfortunately we can't just use `new_borrowed(self.deref())` since the lifetime is shorter
Self {
// Invariants upheld:
// 1 & 2: The bytes came from `self` so they're a valid value and byte slice
// 3: This is borrowed (we're sharing a borrow), so we set owned to false.
buf: self.buf,
owned: false,
_phantom: PhantomData,
}
}
}
}
impl<'a, V: ?Sized> Drop for VarZeroCow<'a, V> {
fn drop(&mut self) {
if self.owned {
unsafe {
// Safety: (Invariant 3 on buf)
// since owned is true, this is a valid Box<[u8]> and can be cleaned up
let _ = Box::<[u8]>::from_raw(self.buf.as_ptr());
}
}
}
}
impl<'a, V: VarULE + ?Sized> VarZeroCow<'a, V> {
/// Construct from a slice. Errors if the slice doesn't represent a valid `V`
pub fn parse_bytes(bytes: &'a [u8]) -> Result<Self, UleError> {
let val = V::parse_bytes(bytes)?;
Ok(Self::new_borrowed(val))
}
/// Construct from an owned slice. Errors if the slice doesn't represent a valid `V`
pub fn parse_owned_bytes(bytes: Box<[u8]>) -> Result<Self, UleError> {
V::validate_bytes(&bytes)?;
let bytes = ManuallyDrop::new(bytes);
let buf: NonNull<[u8]> = (&**bytes).into();
Ok(Self {
// Invariants upheld:
// 1 & 2: The bytes came from `val` so they're a valid value and byte slice
// 3: This is owned, so we set owned to true.
buf,
owned: true,
_phantom: PhantomData,
})
}
/// Construct from a slice that is known to represent a valid `V`
///
/// # Safety
///
/// `bytes` must be a valid `V`, i.e. it must successfully pass through
/// `V::parse_bytes()` or `V::validate_bytes()`.
pub const unsafe fn from_bytes_unchecked(bytes: &'a [u8]) -> Self {
unsafe {
// Safety: bytes is an &T which is always non-null
let buf: NonNull<[u8]> = NonNull::new_unchecked(bytes as *const [u8] as *mut [u8]);
Self {
// Invariants upheld:
// 1 & 2: Passed upstream to caller
// 3: This is borrowed, so we set owned to false.
buf,
owned: false,
_phantom: PhantomData,
}
}
}
/// Construct this from an [`EncodeAsVarULE`] version of the contained type
///
/// Will always construct an owned version
pub fn from_encodeable<E: EncodeAsVarULE<V>>(encodeable: &E) -> Self {
let b = crate::ule::encode_varule_to_box(encodeable);
Self::new_owned(b)
}
/// Construct a new borrowed version of this
pub fn new_borrowed(val: &'a V) -> Self {
unsafe {
// Safety: val is a valid V, by type
Self::from_bytes_unchecked(val.as_bytes())
}
}
/// Construct a new borrowed version of this
pub fn new_owned(val: Box<V>) -> Self {
let val = ManuallyDrop::new(val);
let buf: NonNull<[u8]> = val.as_bytes().into();
Self {
// Invariants upheld:
// 1 & 2: The bytes came from `val` so they're a valid value and byte slice
// 3: This is owned, so we set owned to true.
buf,
owned: true,
_phantom: PhantomData,
}
}
}
impl<'a, V: ?Sized> VarZeroCow<'a, V> {
/// Whether or not this is owned
pub fn is_owned(&self) -> bool {
self.owned
}
/// Get the byte representation of this type
///
/// Is also always a valid `V` and can be passed to
/// `V::from_bytes_unchecked()`
pub fn as_bytes(&self) -> &[u8] {
// Safety: Invariant 1 on self.buf
// The valid V invariant comes from Invariant 2
unsafe { self.buf.as_ref() }
}
}
impl<'a, V: VarULE + ?Sized> Deref for VarZeroCow<'a, V> {
type Target = V;
fn deref(&self) -> &V {
// Safety: From invariant 2 on self.buf
unsafe { V::from_bytes_unchecked(self.as_bytes()) }
}
}
impl<'a, V: VarULE + ?Sized> From<&'a V> for VarZeroCow<'a, V> {
fn from(other: &'a V) -> Self {
Self::new_borrowed(other)
}
}
impl<'a, V: VarULE + ?Sized> From<Box<V>> for VarZeroCow<'a, V> {
fn from(other: Box<V>) -> Self {
Self::new_owned(other)
}
}
impl<'a, V: VarULE + ?Sized + fmt::Debug> fmt::Debug for VarZeroCow<'a, V> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
self.deref().fmt(f)
}
}
// We need manual impls since `#[derive()]` is disallowed on packed types
impl<'a, V: VarULE + ?Sized + PartialEq> PartialEq for VarZeroCow<'a, V> {
fn eq(&self, other: &Self) -> bool {
self.deref().eq(other.deref())
}
}
impl<'a, V: VarULE + ?Sized + Eq> Eq for VarZeroCow<'a, V> {}
impl<'a, V: VarULE + ?Sized + PartialOrd> PartialOrd for VarZeroCow<'a, V> {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
self.deref().partial_cmp(other.deref())
}
}
impl<'a, V: VarULE + ?Sized + Ord> Ord for VarZeroCow<'a, V> {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
self.deref().cmp(other.deref())
}
}
// # Safety
//
// encode_var_ule_len: Produces the length of the contained bytes, which are known to be a valid V by invariant
//
// encode_var_ule_write: Writes the contained bytes, which are known to be a valid V by invariant
unsafe impl<'a, V: VarULE + ?Sized> EncodeAsVarULE<V> for VarZeroCow<'a, V> {
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unreachable!()
}
#[inline]
fn encode_var_ule_len(&self) -> usize {
self.as_bytes().len()
}
#[inline]
fn encode_var_ule_write(&self, dst: &mut [u8]) {
dst.copy_from_slice(self.as_bytes())
}
}
#[cfg(feature = "serde")]
impl<'a, V: VarULE + ?Sized + serde::Serialize> serde::Serialize for VarZeroCow<'a, V> {
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
if serializer.is_human_readable() {
<V as serde::Serialize>::serialize(self.deref(), serializer)
} else {
serializer.serialize_bytes(self.as_bytes())
}
}
}
#[cfg(feature = "serde")]
impl<'a, 'de: 'a, V: VarULE + ?Sized> serde::Deserialize<'de> for VarZeroCow<'a, V>
where
Box<V>: serde::Deserialize<'de>,
{
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
where
Des: serde::Deserializer<'de>,
{
if deserializer.is_human_readable() {
let b = Box::<V>::deserialize(deserializer)?;
Ok(Self::new_owned(b))
} else {
let bytes = <&[u8]>::deserialize(deserializer)?;
Self::parse_bytes(bytes).map_err(serde::de::Error::custom)
}
}
}
#[cfg(feature = "databake")]
impl<'a, V: VarULE + ?Sized> databake::Bake for VarZeroCow<'a, V> {
fn bake(&self, env: &databake::CrateEnv) -> databake::TokenStream {
env.insert("zerovec");
let bytes = self.as_bytes().bake(env);
databake::quote! {
// Safety: Known to come from a valid V since self.as_bytes() is always a valid V
unsafe {
zerovec::VarZeroCow::from_bytes_unchecked(#bytes)
}
}
}
}
#[cfg(feature = "databake")]
impl<'a, V: VarULE + ?Sized> databake::BakeSize for VarZeroCow<'a, V> {
fn borrows_size(&self) -> usize {
self.as_bytes().len()
}
}
impl<'a, V: VarULE + ?Sized> ZeroFrom<'a, V> for VarZeroCow<'a, V> {
#[inline]
fn zero_from(other: &'a V) -> Self {
Self::new_borrowed(other)
}
}
impl<'a, 'b, V: VarULE + ?Sized> ZeroFrom<'a, VarZeroCow<'b, V>> for VarZeroCow<'a, V> {
#[inline]
fn zero_from(other: &'a VarZeroCow<'b, V>) -> Self {
Self::new_borrowed(other)
}
}
#[cfg(test)]
mod tests {
use super::VarZeroCow;
use crate::ule::tuplevar::Tuple3VarULE;
use crate::vecs::VarZeroSlice;
#[test]
fn test_cow_roundtrip() {
type Messy = Tuple3VarULE<str, [u8], VarZeroSlice<str>>;
let vec = vec!["one", "two", "three"];
let messy: VarZeroCow<Messy> =
VarZeroCow::from_encodeable(&("hello", &b"g\xFF\xFFdbye"[..], vec));
assert_eq!(messy.a(), "hello");
assert_eq!(messy.b(), b"g\xFF\xFFdbye");
assert_eq!(&messy.c()[1], "two");
#[cfg(feature = "serde")]
{
let bincode = bincode::serialize(&messy).unwrap();
let deserialized: VarZeroCow<Messy> = bincode::deserialize(&bincode).unwrap();
assert_eq!(
messy, deserialized,
"Single element roundtrips with bincode"
);
assert!(!deserialized.is_owned());
let json = serde_json::to_string(&messy).unwrap();
let deserialized: VarZeroCow<Messy> = serde_json::from_str(&json).unwrap();
assert_eq!(messy, deserialized, "Single element roundtrips with serde");
}
}
}