1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use crate::ule::{EncodeAsVarULE, UleError, VarULE};
use alloc::boxed::Box;
use core::fmt;
use core::marker::PhantomData;
use core::mem::ManuallyDrop;
use core::ops::Deref;
use core::ptr::NonNull;
use zerofrom::ZeroFrom;

/// Copy-on-write type that efficiently represents [`VarULE`] types as their bitstream representation.
///
/// The primary use case for [`VarULE`] types is the ability to store complex variable-length datastructures
/// inside variable-length collections like [`crate::VarZeroVec`].
///
/// Underlying this ability is the fact that [`VarULE`] types can be efficiently represented as a flat
/// bytestream.
///
/// In zero-copy cases, sometimes one wishes to unconditionally use this bytestream representation, for example
/// to save stack size. A struct with five `Cow<'a, str>`s is not as stack-efficient as a single `Cow` containing
/// the bytestream representation of, say, `Tuple5VarULE<str, str, str, str, str>`.
///
/// This type helps in this case: It is logically a `Cow<'a, V>`, with some optimizations, that is guaranteed
/// to serialize as a byte stream in machine-readable scenarios.
///
/// During human-readable serialization, it will fall back to the serde impls on `V`, which ought to have
/// a human-readable variant.
pub struct VarZeroCow<'a, V: ?Sized> {
    /// Pointer to data
    ///
    /// # Safety Invariants
    ///
    /// 1. This slice must always be valid as a byte slice
    /// 2. This slice must represent a valid `V`
    /// 3. If `owned` is true, this slice can be freed.
    ///
    /// The slice may NOT have the lifetime of `'a`.
    buf: NonNull<[u8]>,
    /// The buffer is `Box<[u8]>` if true
    owned: bool,
    _phantom: PhantomData<(&'a V, Box<V>)>,
}

// This is mostly just a `Cow<[u8]>`, safe to implement Send and Sync on
unsafe impl<'a, V: ?Sized> Send for VarZeroCow<'a, V> {}
unsafe impl<'a, V: ?Sized> Sync for VarZeroCow<'a, V> {}

impl<'a, V: ?Sized> Clone for VarZeroCow<'a, V> {
    fn clone(&self) -> Self {
        if self.is_owned() {
            // This clones the box
            let b: Box<[u8]> = self.as_bytes().into();
            let b = ManuallyDrop::new(b);
            let buf: NonNull<[u8]> = (&**b).into();
            Self {
                // Invariants upheld:
                // 1 & 2: The bytes came from `self` so they're a valid value and byte slice
                // 3: This is owned (we cloned it), so we set owned to true.
                buf,
                owned: true,
                _phantom: PhantomData,
            }
        } else {
            // Unfortunately we can't just use `new_borrowed(self.deref())` since the lifetime is shorter
            Self {
                // Invariants upheld:
                // 1 & 2: The bytes came from `self` so they're a valid value and byte slice
                // 3: This is borrowed (we're sharing a borrow), so we set owned to false.
                buf: self.buf,
                owned: false,
                _phantom: PhantomData,
            }
        }
    }
}

impl<'a, V: ?Sized> Drop for VarZeroCow<'a, V> {
    fn drop(&mut self) {
        if self.owned {
            unsafe {
                // Safety: (Invariant 3 on buf)
                // since owned is true, this is a valid Box<[u8]> and can be cleaned up
                let _ = Box::<[u8]>::from_raw(self.buf.as_ptr());
            }
        }
    }
}

impl<'a, V: VarULE + ?Sized> VarZeroCow<'a, V> {
    /// Construct from a slice. Errors if the slice doesn't represent a valid `V`
    pub fn parse_bytes(bytes: &'a [u8]) -> Result<Self, UleError> {
        let val = V::parse_bytes(bytes)?;
        Ok(Self::new_borrowed(val))
    }

    /// Construct from an owned slice. Errors if the slice doesn't represent a valid `V`
    pub fn parse_owned_bytes(bytes: Box<[u8]>) -> Result<Self, UleError> {
        V::validate_bytes(&bytes)?;
        let bytes = ManuallyDrop::new(bytes);
        let buf: NonNull<[u8]> = (&**bytes).into();
        Ok(Self {
            // Invariants upheld:
            // 1 & 2: The bytes came from `val` so they're a valid value and byte slice
            // 3: This is owned, so we set owned to true.
            buf,
            owned: true,
            _phantom: PhantomData,
        })
    }

    /// Construct from a slice that is known to represent a valid `V`
    ///
    /// # Safety
    ///
    /// `bytes` must be a valid `V`, i.e. it must successfully pass through
    /// `V::parse_bytes()` or `V::validate_bytes()`.
    pub const unsafe fn from_bytes_unchecked(bytes: &'a [u8]) -> Self {
        unsafe {
            // Safety: bytes is an &T which is always non-null
            let buf: NonNull<[u8]> = NonNull::new_unchecked(bytes as *const [u8] as *mut [u8]);
            Self {
                // Invariants upheld:
                // 1 & 2: Passed upstream to caller
                // 3: This is borrowed, so we set owned to false.
                buf,
                owned: false,
                _phantom: PhantomData,
            }
        }
    }

    /// Construct this from an [`EncodeAsVarULE`] version of the contained type
    ///
    /// Will always construct an owned version
    pub fn from_encodeable<E: EncodeAsVarULE<V>>(encodeable: &E) -> Self {
        let b = crate::ule::encode_varule_to_box(encodeable);
        Self::new_owned(b)
    }

    /// Construct a new borrowed version of this
    pub fn new_borrowed(val: &'a V) -> Self {
        unsafe {
            // Safety: val is a valid V, by type
            Self::from_bytes_unchecked(val.as_bytes())
        }
    }

    /// Construct a new borrowed version of this
    pub fn new_owned(val: Box<V>) -> Self {
        let val = ManuallyDrop::new(val);
        let buf: NonNull<[u8]> = val.as_bytes().into();
        Self {
            // Invariants upheld:
            // 1 & 2: The bytes came from `val` so they're a valid value and byte slice
            // 3: This is owned, so we set owned to true.
            buf,
            owned: true,
            _phantom: PhantomData,
        }
    }
}

impl<'a, V: ?Sized> VarZeroCow<'a, V> {
    /// Whether or not this is owned
    pub fn is_owned(&self) -> bool {
        self.owned
    }

    /// Get the byte representation of this type
    ///
    /// Is also always a valid `V` and can be passed to
    /// `V::from_bytes_unchecked()`
    pub fn as_bytes(&self) -> &[u8] {
        // Safety: Invariant 1 on self.buf
        // The valid V invariant comes from Invariant 2
        unsafe { self.buf.as_ref() }
    }
}

impl<'a, V: VarULE + ?Sized> Deref for VarZeroCow<'a, V> {
    type Target = V;
    fn deref(&self) -> &V {
        // Safety: From invariant 2 on self.buf
        unsafe { V::from_bytes_unchecked(self.as_bytes()) }
    }
}

impl<'a, V: VarULE + ?Sized> From<&'a V> for VarZeroCow<'a, V> {
    fn from(other: &'a V) -> Self {
        Self::new_borrowed(other)
    }
}

impl<'a, V: VarULE + ?Sized> From<Box<V>> for VarZeroCow<'a, V> {
    fn from(other: Box<V>) -> Self {
        Self::new_owned(other)
    }
}

impl<'a, V: VarULE + ?Sized + fmt::Debug> fmt::Debug for VarZeroCow<'a, V> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        self.deref().fmt(f)
    }
}

// We need manual impls since `#[derive()]` is disallowed on packed types
impl<'a, V: VarULE + ?Sized + PartialEq> PartialEq for VarZeroCow<'a, V> {
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<'a, V: VarULE + ?Sized + Eq> Eq for VarZeroCow<'a, V> {}

impl<'a, V: VarULE + ?Sized + PartialOrd> PartialOrd for VarZeroCow<'a, V> {
    fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
        self.deref().partial_cmp(other.deref())
    }
}

impl<'a, V: VarULE + ?Sized + Ord> Ord for VarZeroCow<'a, V> {
    fn cmp(&self, other: &Self) -> core::cmp::Ordering {
        self.deref().cmp(other.deref())
    }
}

// # Safety
//
// encode_var_ule_len: Produces the length of the contained bytes, which are known to be a valid V by invariant
//
// encode_var_ule_write: Writes the contained bytes, which are known to be a valid V by invariant
unsafe impl<'a, V: VarULE + ?Sized> EncodeAsVarULE<V> for VarZeroCow<'a, V> {
    fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
        // unnecessary if the other two are implemented
        unreachable!()
    }

    #[inline]
    fn encode_var_ule_len(&self) -> usize {
        self.as_bytes().len()
    }

    #[inline]
    fn encode_var_ule_write(&self, dst: &mut [u8]) {
        dst.copy_from_slice(self.as_bytes())
    }
}

#[cfg(feature = "serde")]
impl<'a, V: VarULE + ?Sized + serde::Serialize> serde::Serialize for VarZeroCow<'a, V> {
    fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
    where
        S: serde::Serializer,
    {
        if serializer.is_human_readable() {
            <V as serde::Serialize>::serialize(self.deref(), serializer)
        } else {
            serializer.serialize_bytes(self.as_bytes())
        }
    }
}

#[cfg(feature = "serde")]
impl<'a, 'de: 'a, V: VarULE + ?Sized> serde::Deserialize<'de> for VarZeroCow<'a, V>
where
    Box<V>: serde::Deserialize<'de>,
{
    fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error>
    where
        Des: serde::Deserializer<'de>,
    {
        if deserializer.is_human_readable() {
            let b = Box::<V>::deserialize(deserializer)?;
            Ok(Self::new_owned(b))
        } else {
            let bytes = <&[u8]>::deserialize(deserializer)?;
            Self::parse_bytes(bytes).map_err(serde::de::Error::custom)
        }
    }
}

#[cfg(feature = "databake")]
impl<'a, V: VarULE + ?Sized> databake::Bake for VarZeroCow<'a, V> {
    fn bake(&self, env: &databake::CrateEnv) -> databake::TokenStream {
        env.insert("zerovec");
        let bytes = self.as_bytes().bake(env);
        databake::quote! {
            // Safety: Known to come from a valid V since self.as_bytes() is always a valid V
            unsafe {
                zerovec::VarZeroCow::from_bytes_unchecked(#bytes)
            }
        }
    }
}

#[cfg(feature = "databake")]
impl<'a, V: VarULE + ?Sized> databake::BakeSize for VarZeroCow<'a, V> {
    fn borrows_size(&self) -> usize {
        self.as_bytes().len()
    }
}

impl<'a, V: VarULE + ?Sized> ZeroFrom<'a, V> for VarZeroCow<'a, V> {
    #[inline]
    fn zero_from(other: &'a V) -> Self {
        Self::new_borrowed(other)
    }
}

impl<'a, 'b, V: VarULE + ?Sized> ZeroFrom<'a, VarZeroCow<'b, V>> for VarZeroCow<'a, V> {
    #[inline]
    fn zero_from(other: &'a VarZeroCow<'b, V>) -> Self {
        Self::new_borrowed(other)
    }
}

#[cfg(test)]
mod tests {
    use super::VarZeroCow;
    use crate::ule::tuplevar::Tuple3VarULE;
    use crate::vecs::VarZeroSlice;
    #[test]
    fn test_cow_roundtrip() {
        type Messy = Tuple3VarULE<str, [u8], VarZeroSlice<str>>;
        let vec = vec!["one", "two", "three"];
        let messy: VarZeroCow<Messy> =
            VarZeroCow::from_encodeable(&("hello", &b"g\xFF\xFFdbye"[..], vec));

        assert_eq!(messy.a(), "hello");
        assert_eq!(messy.b(), b"g\xFF\xFFdbye");
        assert_eq!(&messy.c()[1], "two");

        #[cfg(feature = "serde")]
        {
            let bincode = bincode::serialize(&messy).unwrap();
            let deserialized: VarZeroCow<Messy> = bincode::deserialize(&bincode).unwrap();
            assert_eq!(
                messy, deserialized,
                "Single element roundtrips with bincode"
            );
            assert!(!deserialized.is_owned());

            let json = serde_json::to_string(&messy).unwrap();
            let deserialized: VarZeroCow<Messy> = serde_json::from_str(&json).unwrap();
            assert_eq!(messy, deserialized, "Single element roundtrips with serde");
        }
    }
}