1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
use core::{marker::Copy, mem::size_of};
use super::{AsULE, ULE};
/// The [`ULE`] types implementing this trait guarantee that [`NicheBytes::NICHE_BIT_PATTERN`]
/// can never occur as a valid byte representation of the type.
///
/// Guarantees for a valid implementation.
/// 1. N must be equal to `core::mem::sizeo_of::<Self>()` or else it will
/// cause panics.
/// 2. The bit pattern [`NicheBytes::NICHE_BIT_PATTERN`] must not be incorrect as it would lead to
/// weird behaviour.
/// 3. The abstractions built on top of this trait must panic on an invalid N.
/// 4. The abstractions built on this trait that use type punning must ensure that type being
/// punned is [`ULE`].
pub trait NicheBytes<const N: usize> {
const NICHE_BIT_PATTERN: [u8; N];
}
/// [`ULE`] type for [`NichedOption<U,N>`] where U implements [`NicheBytes`].
/// The invalid bit pattern is used as the niche.
///
/// This uses 1 byte less than [`crate::ule::OptionULE<U>`] to represent [`NichedOption<U,N>`].
///
/// # Example
///
/// ```
/// use core::num::NonZeroI8;
/// use zerovec::ule::NichedOption;
/// use zerovec::ZeroVec;
///
/// let bytes = &[0x00, 0x01, 0x02, 0x00];
/// let zv_no: ZeroVec<NichedOption<NonZeroI8, 1>> =
/// ZeroVec::parse_byte_slice(bytes)
/// .expect("Unable to parse as NichedOption.");
///
/// assert_eq!(zv_no.get(0).map(|e| e.0), Some(None));
/// assert_eq!(zv_no.get(1).map(|e| e.0), Some(NonZeroI8::new(1)));
/// assert_eq!(zv_no.get(2).map(|e| e.0), Some(NonZeroI8::new(2)));
/// assert_eq!(zv_no.get(3).map(|e| e.0), Some(None));
/// ```
// Invariants:
// The union stores [`NicheBytes::NICHE_BIT_PATTERN`] when None.
// Any other bit pattern is a valid.
#[repr(C)]
pub union NichedOptionULE<U: NicheBytes<N> + ULE, const N: usize> {
/// Invariant: The value is `niche` only if the bytes equal NICHE_BIT_PATTERN.
niche: [u8; N],
/// Invariant: The value is `valid` if the `niche` field does not match NICHE_BIT_PATTERN.
valid: U,
}
impl<U: NicheBytes<N> + ULE + core::fmt::Debug, const N: usize> core::fmt::Debug
for NichedOptionULE<U, N>
{
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.get().fmt(f)
}
}
impl<U: NicheBytes<N> + ULE, const N: usize> NichedOptionULE<U, N> {
/// New `NichedOptionULE<U, N>` from `Option<U>`
pub fn new(opt: Option<U>) -> Self {
assert!(N == core::mem::size_of::<U>());
match opt {
Some(u) => Self { valid: u },
None => Self {
niche: <U as NicheBytes<N>>::NICHE_BIT_PATTERN,
},
}
}
/// Convert to an `Option<U>`
pub fn get(self) -> Option<U> {
// Safety: The union stores NICHE_BIT_PATTERN when None otherwise a valid U
unsafe {
if self.niche == <U as NicheBytes<N>>::NICHE_BIT_PATTERN {
None
} else {
Some(self.valid)
}
}
}
/// Borrows as an `Option<&U>`.
pub fn as_ref(&self) -> Option<&U> {
// Safety: The union stores NICHE_BIT_PATTERN when None otherwise a valid U
unsafe {
if self.niche == <U as NicheBytes<N>>::NICHE_BIT_PATTERN {
None
} else {
Some(&self.valid)
}
}
}
}
impl<U: NicheBytes<N> + ULE, const N: usize> Copy for NichedOptionULE<U, N> {}
impl<U: NicheBytes<N> + ULE, const N: usize> Clone for NichedOptionULE<U, N> {
fn clone(&self) -> Self {
*self
}
}
impl<U: NicheBytes<N> + ULE + PartialEq, const N: usize> PartialEq for NichedOptionULE<U, N> {
fn eq(&self, other: &Self) -> bool {
self.get().eq(&other.get())
}
}
impl<U: NicheBytes<N> + ULE + Eq, const N: usize> Eq for NichedOptionULE<U, N> {}
/// Safety for ULE trait
/// 1. NichedOptionULE does not have any padding bytes due to `#[repr(C)]` on a struct
/// containing only ULE fields.
/// NichedOptionULE either contains NICHE_BIT_PATTERN or valid U byte sequences.
/// In both cases the data is initialized.
/// 2. NichedOptionULE is aligned to 1 byte due to `#[repr(C, packed)]` on a struct containing only
/// ULE fields.
/// 3. validate_byte_slice impl returns an error if invalid bytes are encountered.
/// 4. validate_byte_slice impl returns an error there are extra bytes.
/// 5. The other ULE methods are left to their default impl.
/// 6. NichedOptionULE equality is based on ULE equality of the subfield, assuming that NicheBytes
/// has been implemented correctly (this is a correctness but not a safety guarantee).
unsafe impl<U: NicheBytes<N> + ULE, const N: usize> ULE for NichedOptionULE<U, N> {
fn validate_byte_slice(bytes: &[u8]) -> Result<(), crate::ule::UleError> {
let size = size_of::<Self>();
// The implemention is only correct if NICHE_BIT_PATTERN has same number of bytes as the
// type.
debug_assert!(N == core::mem::size_of::<U>());
// The bytes should fully transmute to a collection of Self
if bytes.len() % size != 0 {
return Err(crate::ule::UleError::length::<Self>(bytes.len()));
}
bytes.chunks(size).try_for_each(|chunk| {
// Associated const cannot be referenced in a pattern
// https://doc.rust-lang.org/error-index.html#E0158
if chunk == <U as NicheBytes<N>>::NICHE_BIT_PATTERN {
Ok(())
} else {
U::validate_byte_slice(chunk)
}
})
}
}
/// Optional type which uses [`NichedOptionULE<U,N>`] as ULE type.
///
/// The implementors guarantee that `N == core::mem::size_of::<Self>()`
/// [`repr(transparent)`] guarantees that the layout is same as [`Option<U>`]
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
#[repr(transparent)]
#[allow(clippy::exhaustive_structs)] // newtype
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
pub struct NichedOption<U, const N: usize>(pub Option<U>);
impl<U, const N: usize> Default for NichedOption<U, N> {
fn default() -> Self {
Self(None)
}
}
impl<U: AsULE, const N: usize> AsULE for NichedOption<U, N>
where
U::ULE: NicheBytes<N>,
{
type ULE = NichedOptionULE<U::ULE, N>;
fn to_unaligned(self) -> Self::ULE {
NichedOptionULE::new(self.0.map(U::to_unaligned))
}
fn from_unaligned(unaligned: Self::ULE) -> Self {
Self(unaligned.get().map(U::from_unaligned))
}
}