1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
use super::*;
use core::cmp::Ordering;
use core::marker::PhantomData;
use core::mem::{self, MaybeUninit};
/// This type is the [`ULE`] type for `Option<U>` where `U` is a [`ULE`] type
///
/// # Example
///
/// ```rust
/// use zerovec::ZeroVec;
///
/// let z = ZeroVec::alloc_from_slice(&[
/// Some('a'),
/// Some('á'),
/// Some('ø'),
/// None,
/// Some('ł'),
/// ]);
///
/// assert_eq!(z.get(2), Some(Some('ø')));
/// assert_eq!(z.get(3), Some(None));
/// ```
// Invariants:
// The MaybeUninit is zeroed when None (bool = false),
// and is valid when Some (bool = true)
#[repr(C, packed)]
pub struct OptionULE<U>(bool, MaybeUninit<U>);
impl<U: Copy> OptionULE<U> {
/// Obtain this as an `Option<T>`
pub fn get(self) -> Option<U> {
if self.0 {
unsafe {
// safety: self.0 is true so the MaybeUninit is valid
Some(self.1.assume_init())
}
} else {
None
}
}
/// Construct an `OptionULE<U>` from an equivalent `Option<T>`
pub fn new(opt: Option<U>) -> Self {
if let Some(inner) = opt {
Self(true, MaybeUninit::new(inner))
} else {
Self(false, MaybeUninit::zeroed())
}
}
}
impl<U: Copy + core::fmt::Debug> core::fmt::Debug for OptionULE<U> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.get().fmt(f)
}
}
// Safety (based on the safety checklist on the ULE trait):
// 1. OptionULE does not include any uninitialized or padding bytes.
// (achieved by `#[repr(C, packed)]` on a struct containing only ULE fields,
// in the context of this impl. The MaybeUninit is valid for all byte sequences, and we only generate
/// zeroed or valid-T byte sequences to fill it)
// 2. OptionULE is aligned to 1 byte.
// (achieved by `#[repr(C, packed)]` on a struct containing only ULE fields, in the context of this impl)
// 3. The impl of validate_bytes() returns an error if any byte is not valid.
// 4. The impl of validate_bytes() returns an error if there are extra bytes.
// 5. The other ULE methods use the default impl.
// 6. OptionULE byte equality is semantic equality by relying on the ULE equality
// invariant on the subfields
unsafe impl<U: ULE> ULE for OptionULE<U> {
fn validate_bytes(bytes: &[u8]) -> Result<(), UleError> {
let size = mem::size_of::<Self>();
if bytes.len() % size != 0 {
return Err(UleError::length::<Self>(bytes.len()));
}
for chunk in bytes.chunks(size) {
#[allow(clippy::indexing_slicing)] // `chunk` will have enough bytes to fit Self
match chunk[0] {
// https://doc.rust-lang.org/reference/types/boolean.html
// Rust booleans are always size 1, align 1 values with valid bit patterns 0x0 or 0x1
0 => {
if !chunk[1..].iter().all(|x| *x == 0) {
return Err(UleError::parse::<Self>());
}
}
1 => U::validate_bytes(&chunk[1..])?,
_ => return Err(UleError::parse::<Self>()),
}
}
Ok(())
}
}
impl<T: AsULE> AsULE for Option<T> {
type ULE = OptionULE<T::ULE>;
fn to_unaligned(self) -> OptionULE<T::ULE> {
OptionULE::new(self.map(T::to_unaligned))
}
fn from_unaligned(other: OptionULE<T::ULE>) -> Self {
other.get().map(T::from_unaligned)
}
}
impl<U: Copy> Copy for OptionULE<U> {}
impl<U: Copy> Clone for OptionULE<U> {
fn clone(&self) -> Self {
*self
}
}
impl<U: Copy + PartialEq> PartialEq for OptionULE<U> {
fn eq(&self, other: &Self) -> bool {
self.get().eq(&other.get())
}
}
impl<U: Copy + Eq> Eq for OptionULE<U> {}
/// A type allowing one to represent `Option<U>` for [`VarULE`] `U` types.
///
/// ```rust
/// use zerovec::ule::OptionVarULE;
/// use zerovec::VarZeroVec;
///
/// let mut zv: VarZeroVec<OptionVarULE<str>> = VarZeroVec::new();
///
/// zv.make_mut().push(&None::<&str>);
/// zv.make_mut().push(&Some("hello"));
/// zv.make_mut().push(&Some("world"));
/// zv.make_mut().push(&None::<&str>);
///
/// assert_eq!(zv.get(0).unwrap().as_ref(), None);
/// assert_eq!(zv.get(1).unwrap().as_ref(), Some("hello"));
/// ```
// The slice field is empty when None (bool = false),
// and is a valid T when Some (bool = true)
#[repr(C, packed)]
pub struct OptionVarULE<U: VarULE + ?Sized>(PhantomData<U>, bool, [u8]);
impl<U: VarULE + ?Sized> OptionVarULE<U> {
/// Obtain this as an `Option<&U>`
pub fn as_ref(&self) -> Option<&U> {
if self.1 {
unsafe {
// Safety: byte field is a valid T if boolean field is true
Some(U::from_bytes_unchecked(&self.2))
}
} else {
None
}
}
}
impl<U: VarULE + ?Sized + core::fmt::Debug> core::fmt::Debug for OptionVarULE<U> {
fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
self.as_ref().fmt(f)
}
}
// Safety (based on the safety checklist on the VarULE trait):
// 1. OptionVarULE<T> does not include any uninitialized or padding bytes
// (achieved by being repr(C, packed) on ULE types)
// 2. OptionVarULE<T> is aligned to 1 byte (achieved by being repr(C, packed) on ULE types)
// 3. The impl of `validate_bytes()` returns an error if any byte is not valid.
// 4. The impl of `validate_bytes()` returns an error if the slice cannot be used in its entirety
// 5. The impl of `from_bytes_unchecked()` returns a reference to the same data.
// 6. All other methods are defaulted
// 7. OptionVarULE<T> byte equality is semantic equality (achieved by being an aggregate)
unsafe impl<U: VarULE + ?Sized> VarULE for OptionVarULE<U> {
#[inline]
fn validate_bytes(slice: &[u8]) -> Result<(), UleError> {
if slice.is_empty() {
return Err(UleError::length::<Self>(slice.len()));
}
#[allow(clippy::indexing_slicing)] // slice already verified to be nonempty
match slice[0] {
// https://doc.rust-lang.org/reference/types/boolean.html
// Rust booleans are always size 1, align 1 values with valid bit patterns 0x0 or 0x1
0 => {
if slice.len() != 1 {
Err(UleError::length::<Self>(slice.len()))
} else {
Ok(())
}
}
1 => U::validate_bytes(&slice[1..]),
_ => Err(UleError::parse::<Self>()),
}
}
#[inline]
unsafe fn from_bytes_unchecked(bytes: &[u8]) -> &Self {
let entire_struct_as_slice: *const [u8] =
::core::ptr::slice_from_raw_parts(bytes.as_ptr(), bytes.len() - 1);
&*(entire_struct_as_slice as *const Self)
}
}
unsafe impl<T, U> EncodeAsVarULE<OptionVarULE<U>> for Option<T>
where
T: EncodeAsVarULE<U>,
U: VarULE + ?Sized,
{
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unreachable!()
}
#[inline]
fn encode_var_ule_len(&self) -> usize {
if let Some(ref inner) = *self {
// slice + boolean
1 + inner.encode_var_ule_len()
} else {
// boolean + empty slice
1
}
}
#[allow(clippy::indexing_slicing)] // This method is allowed to panic when lengths are invalid
fn encode_var_ule_write(&self, dst: &mut [u8]) {
if let Some(ref inner) = *self {
debug_assert!(
!dst.is_empty(),
"OptionVarULE must have at least one byte when Some"
);
dst[0] = 1;
inner.encode_var_ule_write(&mut dst[1..]);
} else {
debug_assert!(
dst.len() == 1,
"OptionVarULE must have exactly one byte when None"
);
dst[0] = 0;
}
}
}
impl<U: VarULE + ?Sized + PartialEq> PartialEq for OptionVarULE<U> {
fn eq(&self, other: &Self) -> bool {
self.as_ref().eq(&other.as_ref())
}
}
impl<U: VarULE + ?Sized + Eq> Eq for OptionVarULE<U> {}
impl<U: VarULE + ?Sized + PartialOrd> PartialOrd for OptionVarULE<U> {
fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
self.as_ref().partial_cmp(&other.as_ref())
}
}
impl<U: VarULE + ?Sized + Ord> Ord for OptionVarULE<U> {
fn cmp(&self, other: &Self) -> Ordering {
self.as_ref().cmp(&other.as_ref())
}
}