1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
//! ULE impls for tuples.
//!
//! Rust does not guarantee the layout of tuples, so ZeroVec defines its own tuple ULE types.
//!
//! Impls are defined for tuples of up to 6 elements. For longer tuples, use a custom struct
//! with [`#[make_ule]`](crate::make_ule).
//!
//! # Examples
//!
//! ```
//! use zerovec::ZeroVec;
//!
//! // ZeroVec of tuples!
//! let zerovec: ZeroVec<(u32, char)> = [(1, 'a'), (1234901, '啊'), (100, 'अ')]
//! .iter()
//! .copied()
//! .collect();
//!
//! assert_eq!(zerovec.get(1), Some((1234901, '啊')));
//! ```
use super::*;
use core::fmt;
use core::mem;
macro_rules! tuple_ule {
($name:ident, $len:literal, [ $($t:ident $i:tt),+ ]) => {
#[doc = concat!("ULE type for tuples with ", $len, " elements.")]
#[repr(C, packed)]
#[allow(clippy::exhaustive_structs)] // stable
pub struct $name<$($t),+>($(pub $t),+);
// Safety (based on the safety checklist on the ULE trait):
// 1. TupleULE does not include any uninitialized or padding bytes.
// (achieved by `#[repr(C, packed)]` on a struct containing only ULE fields)
// 2. TupleULE is aligned to 1 byte.
// (achieved by `#[repr(C, packed)]` on a struct containing only ULE fields)
// 3. The impl of validate_bytes() returns an error if any byte is not valid.
// 4. The impl of validate_bytes() returns an error if there are extra bytes.
// 5. The other ULE methods use the default impl.
// 6. TupleULE byte equality is semantic equality by relying on the ULE equality
// invariant on the subfields
unsafe impl<$($t: ULE),+> ULE for $name<$($t),+> {
fn validate_bytes(bytes: &[u8]) -> Result<(), UleError> {
// expands to: 0size + mem::size_of::<A>() + mem::size_of::<B>();
let ule_bytes = 0usize $(+ mem::size_of::<$t>())+;
if bytes.len() % ule_bytes != 0 {
return Err(UleError::length::<Self>(bytes.len()));
}
for chunk in bytes.chunks(ule_bytes) {
let mut i = 0;
$(
let j = i;
i += mem::size_of::<$t>();
#[allow(clippy::indexing_slicing)] // length checked
<$t>::validate_bytes(&chunk[j..i])?;
)+
}
Ok(())
}
}
impl<$($t: AsULE),+> AsULE for ($($t),+) {
type ULE = $name<$(<$t>::ULE),+>;
#[inline]
fn to_unaligned(self) -> Self::ULE {
$name($(
self.$i.to_unaligned()
),+)
}
#[inline]
fn from_unaligned(unaligned: Self::ULE) -> Self {
($(
<$t>::from_unaligned(unaligned.$i)
),+)
}
}
impl<$($t: fmt::Debug + ULE),+> fmt::Debug for $name<$($t),+> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
($(self.$i),+).fmt(f)
}
}
// We need manual impls since `#[derive()]` is disallowed on packed types
impl<$($t: PartialEq + ULE),+> PartialEq for $name<$($t),+> {
fn eq(&self, other: &Self) -> bool {
($(self.$i),+).eq(&($(other.$i),+))
}
}
impl<$($t: Eq + ULE),+> Eq for $name<$($t),+> {}
impl<$($t: PartialOrd + ULE),+> PartialOrd for $name<$($t),+> {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
($(self.$i),+).partial_cmp(&($(other.$i),+))
}
}
impl<$($t: Ord + ULE),+> Ord for $name<$($t),+> {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
($(self.$i),+).cmp(&($(other.$i),+))
}
}
impl<$($t: ULE),+> Clone for $name<$($t),+> {
fn clone(&self) -> Self {
*self
}
}
impl<$($t: ULE),+> Copy for $name<$($t),+> {}
impl<'a, $($t: Ord + AsULE + 'static),+> crate::map::ZeroMapKV<'a> for ($($t),+) {
type Container = crate::ZeroVec<'a, ($($t),+)>;
type Slice = crate::ZeroSlice<($($t),+)>;
type GetType = $name<$(<$t>::ULE),+>;
type OwnedType = ($($t),+);
}
};
}
tuple_ule!(Tuple2ULE, "2", [ A 0, B 1 ]);
tuple_ule!(Tuple3ULE, "3", [ A 0, B 1, C 2 ]);
tuple_ule!(Tuple4ULE, "4", [ A 0, B 1, C 2, D 3 ]);
tuple_ule!(Tuple5ULE, "5", [ A 0, B 1, C 2, D 3, E 4 ]);
tuple_ule!(Tuple6ULE, "6", [ A 0, B 1, C 2, D 3, E 4, F 5 ]);
#[test]
fn test_pairule_validate() {
use crate::ZeroVec;
let vec: Vec<(u32, char)> = vec![(1, 'a'), (1234901, '啊'), (100, 'अ')];
let zerovec: ZeroVec<(u32, char)> = vec.iter().copied().collect();
let bytes = zerovec.as_bytes();
let zerovec2 = ZeroVec::parse_bytes(bytes).unwrap();
assert_eq!(zerovec, zerovec2);
// Test failed validation with a correctly sized but differently constrained tuple
// Note: 1234901 is not a valid char
let zerovec3 = ZeroVec::<(char, u32)>::parse_bytes(bytes);
assert!(zerovec3.is_err());
}
#[test]
fn test_tripleule_validate() {
use crate::ZeroVec;
let vec: Vec<(u32, char, i8)> = vec![(1, 'a', -5), (1234901, '啊', 3), (100, 'अ', -127)];
let zerovec: ZeroVec<(u32, char, i8)> = vec.iter().copied().collect();
let bytes = zerovec.as_bytes();
let zerovec2 = ZeroVec::parse_bytes(bytes).unwrap();
assert_eq!(zerovec, zerovec2);
// Test failed validation with a correctly sized but differently constrained tuple
// Note: 1234901 is not a valid char
let zerovec3 = ZeroVec::<(char, i8, u32)>::parse_bytes(bytes);
assert!(zerovec3.is_err());
}
#[test]
fn test_quadule_validate() {
use crate::ZeroVec;
let vec: Vec<(u32, char, i8, u16)> =
vec![(1, 'a', -5, 3), (1234901, '啊', 3, 11), (100, 'अ', -127, 0)];
let zerovec: ZeroVec<(u32, char, i8, u16)> = vec.iter().copied().collect();
let bytes = zerovec.as_bytes();
let zerovec2 = ZeroVec::parse_bytes(bytes).unwrap();
assert_eq!(zerovec, zerovec2);
// Test failed validation with a correctly sized but differently constrained tuple
// Note: 1234901 is not a valid char
let zerovec3 = ZeroVec::<(char, i8, u16, u32)>::parse_bytes(bytes);
assert!(zerovec3.is_err());
}