1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
//! [`VarULE`] impls for tuples.
//!
//! This module exports [`Tuple2VarULE`], [`Tuple3VarULE`], ..., the corresponding [`VarULE`] types
//! of tuples containing purely [`VarULE`] types.
//!
//! This can be paired with [`VarTupleULE`] to make arbitrary combinations of [`ULE`] and [`VarULE`] types.
//!
//! [`VarTupleULE`]: crate::ule::vartuple::VarTupleULE
use super::*;
use crate::varzerovec::{Index16, VarZeroVecFormat};
use alloc::borrow::ToOwned;
use core::fmt;
use core::marker::PhantomData;
use core::mem;
use zerofrom::ZeroFrom;
macro_rules! tuple_varule {
// Invocation: Should be called like `tuple_ule!(Tuple2VarULE, 2, [ A a AX 0, B b BX 1 ])`
//
// $T is a generic name, $t is a lowercase version of it, $T_alt is an "alternate" name to use when we need two types referring
// to the same input field, $i is an index.
//
// $name is the name of the type, $len MUST be the total number of fields, and then $i must be an integer going from 0 to (n - 1) in sequence
// (This macro code can rely on $i < $len)
($name:ident, $len:literal, [ $($T:ident $t:ident $T_alt: ident $i:tt),+ ]) => {
#[doc = concat!("VarULE type for tuples with ", $len, " elements. See module docs for more information")]
#[repr(transparent)]
#[allow(clippy::exhaustive_structs)] // stable
pub struct $name<$($T: ?Sized,)+ Format: VarZeroVecFormat = Index16> {
$($t: PhantomData<$T>,)+
// Safety invariant: Each "field" $i of the MultiFieldsULE is a valid instance of $t
//
// In other words, calling `.get_field::<$T>($i)` is always safe.
//
// This invariant is upheld when this type is constructed during VarULE parsing/validation
multi: MultiFieldsULE<$len, Format>
}
impl<$($T: VarULE + ?Sized,)+ Format: VarZeroVecFormat> $name<$($T,)+ Format> {
$(
#[doc = concat!("Get field ", $i, "of this tuple")]
pub fn $t(&self) -> &$T {
// Safety: See invariant of `multi`.
unsafe {
self.multi.get_field::<$T>($i)
}
}
)+
}
// # Safety
//
// ## Checklist
//
// Safety checklist for `VarULE`:
//
// 1. align(1): repr(transparent) around an align(1) VarULE type: MultiFieldsULE
// 2. No padding: see previous point
// 3. `validate_byte_slice` validates that this type is a valid MultiFieldsULE, and that each field is the correct type from the tuple.
// 4. `validate_byte_slice` checks length by deferring to the inner ULEs
// 5. `from_byte_slice_unchecked` returns a fat pointer to the bytes.
// 6. All other methods are left at their default impl.
// 7. The inner ULEs have byte equality, so this composition has byte equality.
unsafe impl<$($T: VarULE + ?Sized,)+ Format: VarZeroVecFormat> VarULE for $name<$($T,)+ Format>
{
fn validate_byte_slice(bytes: &[u8]) -> Result<(), UleError> {
// Safety: We validate that this type is the same kind of MultiFieldsULE (with $len, Format)
// as in the type def
let multi = <MultiFieldsULE<$len, Format> as VarULE>::parse_byte_slice(bytes)?;
$(
// Safety invariant: $i < $len, from the macro invocation
unsafe {
multi.validate_field::<$T>($i)?;
}
)+
Ok(())
}
unsafe fn from_byte_slice_unchecked(bytes: &[u8]) -> &Self {
// Safety: We validate that this type is the same kind of MultiFieldsULE (with $len, Format)
// as in the type def
let multi = <MultiFieldsULE<$len, Format> as VarULE>::from_byte_slice_unchecked(bytes);
// This type is repr(transparent) over MultiFieldsULE<$len>, so its slices can be transmuted
// Field invariant upheld here: validate_byte_slice above validates every field for being the right type
mem::transmute::<&MultiFieldsULE<$len, Format>, &Self>(multi)
}
}
impl<$($T: fmt::Debug + VarULE + ?Sized,)+ Format: VarZeroVecFormat> fmt::Debug for $name<$($T,)+ Format> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
($(self.$t(),)+).fmt(f)
}
}
// We need manual impls since `#[derive()]` is disallowed on packed types
impl<$($T: PartialEq + VarULE + ?Sized,)+ Format: VarZeroVecFormat> PartialEq for $name<$($T,)+ Format> {
fn eq(&self, other: &Self) -> bool {
($(self.$t(),)+).eq(&($(other.$t(),)+))
}
}
impl<$($T: Eq + VarULE + ?Sized,)+ Format: VarZeroVecFormat> Eq for $name<$($T,)+ Format> {}
impl<$($T: PartialOrd + VarULE + ?Sized,)+ Format: VarZeroVecFormat> PartialOrd for $name<$($T,)+ Format> {
fn partial_cmp(&self, other: &Self) -> Option<core::cmp::Ordering> {
($(self.$t(),)+).partial_cmp(&($(other.$t(),)+))
}
}
impl<$($T: Ord + VarULE + ?Sized,)+ Format: VarZeroVecFormat> Ord for $name<$($T,)+ Format> {
fn cmp(&self, other: &Self) -> core::cmp::Ordering {
($(self.$t(),)+).cmp(&($(other.$t(),)+))
}
}
// # Safety
//
// encode_var_ule_len: returns the length of the individual VarULEs together.
//
// encode_var_ule_write: writes bytes by deferring to the inner VarULE impls.
unsafe impl<$($T,)+ $($T_alt,)+ Format> EncodeAsVarULE<$name<$($T,)+ Format>> for ( $($T_alt),+ )
where
$($T: VarULE + ?Sized,)+
$($T_alt: EncodeAsVarULE<$T>,)+
Format: VarZeroVecFormat,
{
fn encode_var_ule_as_slices<R>(&self, _: impl FnOnce(&[&[u8]]) -> R) -> R {
// unnecessary if the other two are implemented
unreachable!()
}
#[inline]
fn encode_var_ule_len(&self) -> usize {
// Safety: We validate that this type is the same kind of MultiFieldsULE (with $len, Format)
// as in the type def
MultiFieldsULE::<$len, Format>::compute_encoded_len_for([$(self.$i.encode_var_ule_len()),+])
}
#[inline]
fn encode_var_ule_write(&self, dst: &mut [u8]) {
let lengths = [$(self.$i.encode_var_ule_len()),+];
// Safety: We validate that this type is the same kind of MultiFieldsULE (with $len, Format)
// as in the type def
let multi = MultiFieldsULE::<$len, Format>::new_from_lengths_partially_initialized(lengths, dst);
$(
// Safety: $i < $len, from the macro invocation, and field $i is supposed to be of type $T
unsafe {
multi.set_field_at::<$T, $T_alt>($i, &self.$i);
}
)+
}
}
impl<$($T: VarULE + ?Sized,)+ Format: VarZeroVecFormat> ToOwned for $name<$($T,)+ Format> {
type Owned = Box<Self>;
fn to_owned(&self) -> Self::Owned {
encode_varule_to_box(self)
}
}
impl<'a, $($T,)+ $($T_alt,)+ Format> ZeroFrom <'a, $name<$($T,)+ Format>> for ($($T_alt),+)
where
$($T: VarULE + ?Sized,)+
$($T_alt: ZeroFrom<'a, $T>,)+
Format: VarZeroVecFormat {
fn zero_from(other: &'a $name<$($T,)+ Format>) -> Self {
(
$($T_alt::zero_from(other.$t()),)+
)
}
}
#[cfg(feature = "serde")]
impl<$($T: serde::Serialize,)+ Format> serde::Serialize for $name<$($T,)+ Format>
where
$($T: VarULE + ?Sized,)+
// This impl should be present on almost all VarULE types. if it isn't, that is a bug
$(for<'a> &'a $T: ZeroFrom<'a, $T>,)+
Format: VarZeroVecFormat
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error> where S: serde::Serializer {
if serializer.is_human_readable() {
let this = (
$(self.$t()),+
);
<($(&$T),+) as serde::Serialize>::serialize(&this, serializer)
} else {
serializer.serialize_bytes(self.multi.as_bytes())
}
}
}
#[cfg(feature = "serde")]
impl<'de, $($T: VarULE + ?Sized,)+ Format> serde::Deserialize<'de> for Box<$name<$($T,)+ Format>>
where
// This impl should be present on almost all deserializable VarULE types
$( Box<$T>: serde::Deserialize<'de>,)+
Format: VarZeroVecFormat {
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error> where Des: serde::Deserializer<'de> {
if deserializer.is_human_readable() {
let this = <( $(Box<$T>),+) as serde::Deserialize>::deserialize(deserializer)?;
let this_ref = (
$(&*this.$i),+
);
Ok(crate::ule::encode_varule_to_box(&this_ref))
} else {
// This branch should usually not be hit, since Cow-like use cases will hit the Deserialize impl for &'a TupleNVarULE instead.
let deserialized = <&$name<$($T,)+ Format>>::deserialize(deserializer)?;
Ok(deserialized.to_boxed())
}
}
}
#[cfg(feature = "serde")]
impl<'a, 'de: 'a, $($T: VarULE + ?Sized,)+ Format: VarZeroVecFormat> serde::Deserialize<'de> for &'a $name<$($T,)+ Format> {
fn deserialize<Des>(deserializer: Des) -> Result<Self, Des::Error> where Des: serde::Deserializer<'de> {
if deserializer.is_human_readable() {
Err(serde::de::Error::custom(
concat!("&", stringify!($name), " can only deserialize in zero-copy ways"),
))
} else {
let bytes = <&[u8]>::deserialize(deserializer)?;
$name::<$($T,)+ Format>::parse_byte_slice(bytes).map_err(serde::de::Error::custom)
}
}
}
};
}
tuple_varule!(Tuple2VarULE, 2, [ A a AE 0, B b BE 1 ]);
tuple_varule!(Tuple3VarULE, 3, [ A a AE 0, B b BE 1, C c CE 2 ]);
tuple_varule!(Tuple4VarULE, 4, [ A a AE 0, B b BE 1, C c CE 2, D d DE 3 ]);
tuple_varule!(Tuple5VarULE, 5, [ A a AE 0, B b BE 1, C c CE 2, D d DE 3, E e EE 4 ]);
tuple_varule!(Tuple6VarULE, 6, [ A a AE 0, B b BE 1, C c CE 2, D d DE 3, E e EE 4, F f FE 5 ]);
#[cfg(test)]
mod tests {
use super::*;
use crate::varzerovec::{Index16, Index32, Index8, VarZeroVecFormat};
use crate::VarZeroSlice;
use crate::VarZeroVec;
#[test]
fn test_pairvarule_validate() {
let vec: Vec<(&str, &[u8])> = vec![("a", b"b"), ("foo", b"bar"), ("lorem", b"ipsum\xFF")];
let zerovec: VarZeroVec<Tuple2VarULE<str, [u8]>> = (&vec).into();
let bytes = zerovec.as_bytes();
let zerovec2 = VarZeroVec::parse_byte_slice(bytes).unwrap();
assert_eq!(zerovec, zerovec2);
// Test failed validation with a correctly sized but differently constrained tuple
// Note: ipsum\xFF is not a valid str
let zerovec3 = VarZeroVec::<Tuple2VarULE<str, str>>::parse_byte_slice(bytes);
assert!(zerovec3.is_err());
#[cfg(feature = "serde")]
for val in zerovec.iter() {
// Can't use inference due to https://github.com/rust-lang/rust/issues/130180
crate::ule::test_utils::assert_serde_roundtrips::<Tuple2VarULE<str, [u8]>>(val);
}
}
fn test_tripleule_validate_inner<Format: VarZeroVecFormat>() {
let vec: Vec<(&str, &[u8], VarZeroVec<str>)> = vec![
("a", b"b", (&vec!["a", "b", "c"]).into()),
("foo", b"bar", (&vec!["baz", "quux"]).into()),
(
"lorem",
b"ipsum\xFF",
(&vec!["dolor", "sit", "amet"]).into(),
),
];
let zerovec: VarZeroVec<Tuple3VarULE<str, [u8], VarZeroSlice<str>, Format>> = (&vec).into();
let bytes = zerovec.as_bytes();
let zerovec2 = VarZeroVec::parse_byte_slice(bytes).unwrap();
assert_eq!(zerovec, zerovec2);
// Test failed validation with a correctly sized but differently constrained tuple
// Note: the str is unlikely to be a valid varzerovec
let zerovec3 = VarZeroVec::<Tuple3VarULE<VarZeroSlice<str>, [u8], VarZeroSlice<str>, Format>>::parse_byte_slice(bytes);
assert!(zerovec3.is_err());
#[cfg(feature = "serde")]
for val in zerovec.iter() {
// Can't use inference due to https://github.com/rust-lang/rust/issues/130180
crate::ule::test_utils::assert_serde_roundtrips::<
Tuple3VarULE<str, [u8], VarZeroSlice<str>, Format>,
>(val);
}
}
#[test]
fn test_tripleule_validate() {
test_tripleule_validate_inner::<Index8>();
test_tripleule_validate_inner::<Index16>();
test_tripleule_validate_inner::<Index32>();
}
}