1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

use super::VarZeroVecFormatError;
use crate::ule::*;
use alloc::boxed::Box;
use alloc::format;
use alloc::string::String;
use alloc::vec::Vec;
use core::cmp::Ordering;
use core::convert::TryFrom;
use core::marker::PhantomData;
use core::mem;
use core::ops::Range;

/// This trait allows switching between different possible internal
/// representations of VarZeroVec.
///
/// Currently this crate supports three formats: [`Index8`], [`Index16`] and [`Index32`],
/// with [`Index16`] being the default for all [`VarZeroVec`](super::VarZeroVec)
/// types unless explicitly specified otherwise.
///
/// Do not implement this trait, its internals may be changed in the future,
/// and all of its associated items are hidden from the docs.
pub trait VarZeroVecFormat: 'static + Sized {
    /// The type to use for the indexing array
    ///
    /// Safety: must be a ULE for which all byte sequences are allowed
    #[doc(hidden)]
    type Index: IntegerULE;
    /// The type to use for the length segment
    ///
    /// Safety: must be a ULE for which all byte sequences are allowed
    #[doc(hidden)]
    type Len: IntegerULE;
}

/// This trait represents various ULE types that can be used to represent an integer
///
/// Do not implement this trait, its internals may be changed in the future,
/// and all of its associated items are hidden from the docs.
#[allow(clippy::missing_safety_doc)] // no safety section for you, don't implement this trait period
#[doc(hidden)]
pub unsafe trait IntegerULE: ULE {
    /// The error to show when unable to construct a vec
    #[doc(hidden)]
    const TOO_LARGE_ERROR: &'static str;

    /// Safety: must be sizeof(self)
    #[doc(hidden)]
    const SIZE: usize;

    /// Safety: must be maximum integral value represented here
    #[doc(hidden)]
    const MAX_VALUE: u32;

    /// Safety: Must roundtrip with from_usize and represent the correct
    /// integral value
    #[doc(hidden)]
    fn iule_to_usize(self) -> usize;

    #[doc(hidden)]
    fn iule_from_usize(x: usize) -> Option<Self>;

    /// Safety: Should always convert a buffer into an array of Self with the correct length
    #[doc(hidden)]
    fn iule_from_bytes_unchecked_mut(bytes: &mut [u8]) -> &mut [Self];
}

/// This is a [`VarZeroVecFormat`] that stores u8s in the index array, and a u8 for a length.
///
/// Will have a smaller data size, but it's *extremely* likely for larger arrays
/// to be unrepresentable (and error on construction). Should probably be used
/// for known-small arrays, where all but the last field are known-small.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[allow(clippy::exhaustive_structs)] // marker
pub struct Index8;

/// This is a [`VarZeroVecFormat`] that stores u16s in the index array, and a u16 for a length.
///
/// Will have a smaller data size, but it's more likely for larger arrays
/// to be unrepresentable (and error on construction)
///
/// This is the default index size used by all [`VarZeroVec`](super::VarZeroVec) types.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[allow(clippy::exhaustive_structs)] // marker
pub struct Index16;

/// This is a [`VarZeroVecFormat`] that stores u32s in the index array, and a u32 for a length.
/// Will have a larger data size, but will support large arrays without
/// problems.
#[derive(Copy, Clone, Debug, Hash, PartialEq, Eq, PartialOrd, Ord)]
#[allow(clippy::exhaustive_structs)] // marker
pub struct Index32;

impl VarZeroVecFormat for Index8 {
    type Index = u8;
    type Len = u8;
}

impl VarZeroVecFormat for Index16 {
    type Index = RawBytesULE<2>;
    type Len = RawBytesULE<2>;
}

impl VarZeroVecFormat for Index32 {
    type Index = RawBytesULE<4>;
    type Len = RawBytesULE<4>;
}

unsafe impl IntegerULE for u8 {
    const TOO_LARGE_ERROR: &'static str = "Attempted to build VarZeroVec out of elements that \
                                     cumulatively are larger than a u8 in size";
    const SIZE: usize = mem::size_of::<Self>();
    const MAX_VALUE: u32 = u8::MAX as u32;
    #[inline]
    fn iule_to_usize(self) -> usize {
        self as usize
    }
    #[inline]
    fn iule_from_usize(u: usize) -> Option<Self> {
        u8::try_from(u).ok()
    }
    #[inline]
    fn iule_from_bytes_unchecked_mut(bytes: &mut [u8]) -> &mut [Self] {
        bytes
    }
}

unsafe impl IntegerULE for RawBytesULE<2> {
    const TOO_LARGE_ERROR: &'static str = "Attempted to build VarZeroVec out of elements that \
                                     cumulatively are larger than a u16 in size";
    const SIZE: usize = mem::size_of::<Self>();
    const MAX_VALUE: u32 = u16::MAX as u32;
    #[inline]
    fn iule_to_usize(self) -> usize {
        self.as_unsigned_int() as usize
    }
    #[inline]
    fn iule_from_usize(u: usize) -> Option<Self> {
        u16::try_from(u).ok().map(u16::to_unaligned)
    }
    #[inline]
    fn iule_from_bytes_unchecked_mut(bytes: &mut [u8]) -> &mut [Self] {
        Self::from_bytes_unchecked_mut(bytes)
    }
}

unsafe impl IntegerULE for RawBytesULE<4> {
    const TOO_LARGE_ERROR: &'static str = "Attempted to build VarZeroVec out of elements that \
                                     cumulatively are larger than a u32 in size";
    const SIZE: usize = mem::size_of::<Self>();
    const MAX_VALUE: u32 = u32::MAX;
    #[inline]
    fn iule_to_usize(self) -> usize {
        self.as_unsigned_int() as usize
    }
    #[inline]
    fn iule_from_usize(u: usize) -> Option<Self> {
        u32::try_from(u).ok().map(u32::to_unaligned)
    }
    #[inline]
    fn iule_from_bytes_unchecked_mut(bytes: &mut [u8]) -> &mut [Self] {
        Self::from_bytes_unchecked_mut(bytes)
    }
}

/// A more parsed version of `VarZeroSlice`. This type is where most of the VarZeroVec
/// internal representation code lies.
///
/// This is *basically* an `&'a [u8]` to a zero copy buffer, but split out into
/// the buffer components. Logically this is capable of behaving as
/// a `&'a [T::VarULE]`, but since `T::VarULE` is unsized that type does not actually
/// exist.
///
/// See [`VarZeroVecComponents::parse_bytes()`] for information on the internal invariants involved
#[derive(Debug)]
pub struct VarZeroVecComponents<'a, T: ?Sized, F> {
    /// The number of elements
    len: u32,
    /// The list of indices into the `things` slice
    /// Since the first element is always at things[0], the first element of the indices array is for the *second* element
    indices: &'a [u8],
    /// The contiguous list of `T::VarULE`s
    things: &'a [u8],
    marker: PhantomData<(&'a T, F)>,
}

// #[derive()] won't work here since we do not want it to be
// bound on T: Copy
impl<'a, T: ?Sized, F> Copy for VarZeroVecComponents<'a, T, F> {}
impl<'a, T: ?Sized, F> Clone for VarZeroVecComponents<'a, T, F> {
    fn clone(&self) -> Self {
        *self
    }
}

impl<'a, T: VarULE + ?Sized, F> Default for VarZeroVecComponents<'a, T, F> {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl<'a, T: VarULE + ?Sized, F> VarZeroVecComponents<'a, T, F> {
    #[inline]
    pub fn new() -> Self {
        Self {
            len: 0,
            indices: &[],
            things: &[],
            marker: PhantomData,
        }
    }
}
impl<'a, T: VarULE + ?Sized, F: VarZeroVecFormat> VarZeroVecComponents<'a, T, F> {
    /// Construct a new VarZeroVecComponents, checking invariants about the overall buffer size:
    ///
    /// - There must be either zero or at least four bytes (if four, this is the "length" parsed as a usize)
    /// - There must be at least `4*(length - 1) + 4` bytes total, to form the array `indices` of indices
    /// - `0..indices[0]` must index into a valid section of
    ///   `things` (the data after `indices`), such that it parses to a `T::VarULE`
    /// - `indices[i - 1]..indices[i]` must index into a valid section of
    ///   `things` (the data after `indices`), such that it parses to a `T::VarULE`
    /// - `indices[len - 2]..things.len()` must index into a valid section of
    ///   `things`, such that it parses to a `T::VarULE`
    #[inline]
    pub fn parse_bytes(slice: &'a [u8]) -> Result<Self, VarZeroVecFormatError> {
        // The empty VZV is special-cased to the empty slice
        if slice.is_empty() {
            return Ok(VarZeroVecComponents {
                len: 0,
                indices: &[],
                things: &[],
                marker: PhantomData,
            });
        }
        let len_bytes = slice
            .get(0..F::Len::SIZE)
            .ok_or(VarZeroVecFormatError::Metadata)?;
        let len_ule =
            F::Len::parse_bytes_to_slice(len_bytes).map_err(|_| VarZeroVecFormatError::Metadata)?;

        let len = len_ule
            .first()
            .ok_or(VarZeroVecFormatError::Metadata)?
            .iule_to_usize();

        let rest = slice
            .get(F::Len::SIZE..)
            .ok_or(VarZeroVecFormatError::Metadata)?;
        let len_u32 = u32::try_from(len).map_err(|_| VarZeroVecFormatError::Metadata);
        // We pass down the rest of the invariants
        Self::parse_bytes_with_length(len_u32?, rest)
    }

    /// Construct a new VarZeroVecComponents, checking invariants about the overall buffer size:
    ///
    /// - There must be at least `4*len` bytes total, to form the array `indices` of indices.
    /// - `indices[i]..indices[i+1]` must index into a valid section of
    ///   `things` (the data after `indices`), such that it parses to a `T::VarULE`
    /// - `indices[len - 1]..things.len()` must index into a valid section of
    ///   `things`, such that it parses to a `T::VarULE`
    #[inline]
    pub fn parse_bytes_with_length(
        len: u32,
        slice: &'a [u8],
    ) -> Result<Self, VarZeroVecFormatError> {
        let len_minus_one = len.checked_sub(1);
        // The empty VZV is special-cased to the empty slice
        let Some(len_minus_one) = len_minus_one else {
            return Ok(VarZeroVecComponents {
                len: 0,
                indices: &[],
                things: &[],
                marker: PhantomData,
            });
        };
        // The indices array is one element shorter since the first index is always 0,
        // so we use len_minus_one
        let indices_bytes = slice
            .get(..F::Index::SIZE * (len_minus_one as usize))
            .ok_or(VarZeroVecFormatError::Metadata)?;
        let things = slice
            .get(F::Index::SIZE * (len_minus_one as usize)..)
            .ok_or(VarZeroVecFormatError::Metadata)?;

        let borrowed = VarZeroVecComponents {
            len,
            indices: indices_bytes,
            things,
            marker: PhantomData,
        };

        borrowed.check_indices_and_things()?;

        Ok(borrowed)
    }

    /// Construct a [`VarZeroVecComponents`] from a byte slice that has previously
    /// successfully returned a [`VarZeroVecComponents`] when passed to
    /// [`VarZeroVecComponents::parse_bytes()`]. Will return the same
    /// object as one would get from calling [`VarZeroVecComponents::parse_bytes()`].
    ///
    /// # Safety
    /// The bytes must have previously successfully run through
    /// [`VarZeroVecComponents::parse_bytes()`]
    pub unsafe fn from_bytes_unchecked(slice: &'a [u8]) -> Self {
        // The empty VZV is special-cased to the empty slice
        if slice.is_empty() {
            return VarZeroVecComponents {
                len: 0,
                indices: &[],
                things: &[],
                marker: PhantomData,
            };
        }
        // MSRV Rust 1.79: Use split_at_unchecked
        let len_bytes = slice.get_unchecked(0..F::Len::SIZE);
        // Safety: F::Len allows all byte sequences
        let len_ule = F::Len::slice_from_bytes_unchecked(len_bytes);

        let len = len_ule.get_unchecked(0).iule_to_usize();
        let len_u32 = len as u32;

        // Safety: This method requires the bytes to have passed through `parse_bytes()`
        // whereas we're calling something that asks for `parse_bytes_with_length()`.
        // The two methods perform similar validation, with parse_bytes() validating an additional
        // 4-byte `length` header.
        Self::from_bytes_unchecked_with_length(len_u32, slice.get_unchecked(F::Len::SIZE..))
    }

    /// Construct a [`VarZeroVecComponents`] from a byte slice that has previously
    /// successfully returned a [`VarZeroVecComponents`] when passed to
    /// [`VarZeroVecComponents::parse_bytes()`]. Will return the same
    /// object as one would get from calling [`VarZeroVecComponents::parse_bytes()`].
    ///
    /// # Safety
    /// The len,bytes must have previously successfully run through
    /// [`VarZeroVecComponents::parse_bytes_with_length()`]
    pub unsafe fn from_bytes_unchecked_with_length(len: u32, slice: &'a [u8]) -> Self {
        let len_minus_one = len.checked_sub(1);
        // The empty VZV is special-cased to the empty slice
        let Some(len_minus_one) = len_minus_one else {
            return VarZeroVecComponents {
                len: 0,
                indices: &[],
                things: &[],
                marker: PhantomData,
            };
        };
        // The indices array is one element shorter since the first index is always 0,
        // so we use len_minus_one
        let indices_bytes = slice.get_unchecked(..F::Index::SIZE * (len_minus_one as usize));
        let things = slice.get_unchecked(F::Index::SIZE * (len_minus_one as usize)..);

        VarZeroVecComponents {
            len,
            indices: indices_bytes,
            things,
            marker: PhantomData,
        }
    }

    /// Get the number of elements in this vector
    #[inline]
    pub fn len(self) -> usize {
        self.len as usize
    }

    /// Returns `true` if the vector contains no elements.
    #[inline]
    pub fn is_empty(self) -> bool {
        self.len == 0
    }

    /// Get the idx'th element out of this slice. Returns `None` if out of bounds.
    #[inline]
    pub fn get(self, idx: usize) -> Option<&'a T> {
        if idx >= self.len() {
            return None;
        }
        Some(unsafe { self.get_unchecked(idx) })
    }

    /// Get the idx'th element out of this slice. Does not bounds check.
    ///
    /// Safety:
    /// - `idx` must be in bounds (`idx < self.len()`)
    #[inline]
    pub(crate) unsafe fn get_unchecked(self, idx: usize) -> &'a T {
        let range = self.get_things_range(idx);
        let things_slice = self.things.get_unchecked(range);
        T::from_bytes_unchecked(things_slice)
    }

    /// Get the range in `things` for the element at `idx`. Does not bounds check.
    ///
    /// Safety:
    /// - `idx` must be in bounds (`idx < self.len()`)
    #[inline]
    pub(crate) unsafe fn get_things_range(self, idx: usize) -> Range<usize> {
        let start = if let Some(idx_minus_one) = idx.checked_sub(1) {
            self.indices_slice()
                .get_unchecked(idx_minus_one)
                .iule_to_usize()
        } else {
            0
        };
        let end = if idx + 1 == self.len() {
            self.things.len()
        } else {
            self.indices_slice().get_unchecked(idx).iule_to_usize()
        };
        debug_assert!(start <= end);
        start..end
    }

    /// Get the size, in bytes, of the indices array
    pub(crate) unsafe fn get_indices_size(self) -> usize {
        self.indices.len()
    }

    /// Check the internal invariants of VarZeroVecComponents:
    ///
    /// - `indices[i]..indices[i+1]` must index into a valid section of
    ///   `things`, such that it parses to a `T::VarULE`
    /// - `indices[len - 1]..things.len()` must index into a valid section of
    ///   `things`, such that it parses to a `T::VarULE`
    /// - `indices` is monotonically increasing
    ///
    /// This method is NOT allowed to call any other methods on VarZeroVecComponents since all other methods
    /// assume that the slice has been passed through check_indices_and_things
    #[inline]
    #[allow(clippy::len_zero)] // more explicit to enforce safety invariants
    fn check_indices_and_things(self) -> Result<(), VarZeroVecFormatError> {
        if self.len() == 0 {
            if self.things.len() > 0 {
                return Err(VarZeroVecFormatError::Metadata);
            } else {
                return Ok(());
            }
        }
        let indices_slice = self.indices_slice();
        assert_eq!(self.len(), indices_slice.len() + 1);
        // Safety: i is in bounds (assertion above)
        let mut start = 0;
        for i in 0..self.len() {
            // The indices array is offset by 1: indices[0] is the end of the first
            // element and the start of the next, since the start of the first element
            // is always things[0]. So to get the end we get element `i`.
            let end = if let Some(end) = indices_slice.get(i) {
                end.iule_to_usize()
            } else {
                // This only happens at i = self.len() - 1 = indices_slice.len() + 1 - 1
                // = indices_slice.len(). This is the last `end`, which is always the size of
                // `things` and thus never stored in the array
                self.things.len()
            };

            if start > end {
                return Err(VarZeroVecFormatError::Metadata);
            }
            if end > self.things.len() {
                return Err(VarZeroVecFormatError::Metadata);
            }
            // Safety: start..end is a valid range in self.things
            let bytes = unsafe { self.things.get_unchecked(start..end) };
            T::parse_bytes(bytes).map_err(VarZeroVecFormatError::Values)?;
            start = end;
        }
        Ok(())
    }

    /// Create an iterator over the Ts contained in VarZeroVecComponents
    #[inline]
    pub fn iter(self) -> VarZeroSliceIter<'a, T, F> {
        VarZeroSliceIter::new(self)
    }

    pub fn to_vec(self) -> Vec<Box<T>> {
        self.iter().map(T::to_boxed).collect()
    }

    #[inline]
    fn indices_slice(&self) -> &'a [F::Index] {
        unsafe { F::Index::slice_from_bytes_unchecked(self.indices) }
    }

    // Dump a debuggable representation of this type
    #[allow(unused)] // useful for debugging
    pub(crate) fn dump(&self) -> String {
        let indices = self
            .indices_slice()
            .iter()
            .copied()
            .map(IntegerULE::iule_to_usize)
            .collect::<Vec<_>>();
        format!("VarZeroVecComponents {{ indices: {indices:?} }}")
    }
}

/// An iterator over VarZeroSlice
#[derive(Debug)]
pub struct VarZeroSliceIter<'a, T: ?Sized, F = Index16> {
    components: VarZeroVecComponents<'a, T, F>,
    index: usize,
    // Safety invariant: must be a valid index into the data segment of `components`, or an index at the end
    // i.e. start_index <= components.things.len()
    //
    // It must be a valid index into the `things` array of components, coming from `components.indices_slice()`
    start_index: usize,
}

impl<'a, T: VarULE + ?Sized, F: VarZeroVecFormat> VarZeroSliceIter<'a, T, F> {
    fn new(c: VarZeroVecComponents<'a, T, F>) -> Self {
        Self {
            components: c,
            index: 0,
            // Invariant upheld, 0 is always a valid index-or-end
            start_index: 0,
        }
    }
}
impl<'a, T: VarULE + ?Sized, F: VarZeroVecFormat> Iterator for VarZeroSliceIter<'a, T, F> {
    type Item = &'a T;

    fn next(&mut self) -> Option<Self::Item> {
        // Note: the indices array doesn't contain 0 or len, we need to specially handle those edges. The 0 is handled
        // by start_index, and the len is handled by the code for `end`.

        if self.index >= self.components.len() {
            return None;
        }

        // Invariant established: self.index is in bounds for self.components.len(),
        // which means it is in bounds for self.components.indices_slice() since that has the same length

        let end = if self.index + 1 == self.components.len() {
            // We don't store the end index since it is computable, so the last element should use self.components.things.len()
            self.components.things.len()
        } else {
            // Safety: self.index was known to be in bounds from the bounds check above.
            unsafe {
                self.components
                    .indices_slice()
                    .get_unchecked(self.index)
                    .iule_to_usize()
            }
        };
        // Invariant established: end has the same invariant as self.start_index since it comes from indices_slice, which is guaranteed
        // to only contain valid indexes

        let item = unsafe {
            // Safety: self.start_index and end both have in-range invariants, plus they are valid indices from indices_slice
            // which means we can treat this data as a T
            T::from_bytes_unchecked(self.components.things.get_unchecked(self.start_index..end))
        };
        self.index += 1;
        // Invariant upheld: end has the same invariant as self.start_index
        self.start_index = end;
        Some(item)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let remainder = self.components.len() - self.index;
        (remainder, Some(remainder))
    }
}

impl<'a, T: VarULE + ?Sized, F: VarZeroVecFormat> ExactSizeIterator for VarZeroSliceIter<'a, T, F> {
    fn len(&self) -> usize {
        self.components.len() - self.index
    }
}

impl<'a, T, F> VarZeroVecComponents<'a, T, F>
where
    T: VarULE,
    T: ?Sized,
    T: Ord,
    F: VarZeroVecFormat,
{
    /// Binary searches a sorted `VarZeroVecComponents<T>` for the given element. For more information, see
    /// the primitive function [`binary_search`](slice::binary_search).
    pub fn binary_search(&self, needle: &T) -> Result<usize, usize> {
        self.binary_search_by(|probe| probe.cmp(needle))
    }

    pub fn binary_search_in_range(
        &self,
        needle: &T,
        range: Range<usize>,
    ) -> Option<Result<usize, usize>> {
        self.binary_search_in_range_by(|probe| probe.cmp(needle), range)
    }
}

impl<'a, T, F> VarZeroVecComponents<'a, T, F>
where
    T: VarULE,
    T: ?Sized,
    F: VarZeroVecFormat,
{
    /// Binary searches a sorted `VarZeroVecComponents<T>` for the given predicate. For more information, see
    /// the primitive function [`binary_search_by`](slice::binary_search_by).
    pub fn binary_search_by(&self, predicate: impl FnMut(&T) -> Ordering) -> Result<usize, usize> {
        // Safety: 0 and len are in range
        unsafe { self.binary_search_in_range_unchecked(predicate, 0..self.len()) }
    }

    // Binary search within a range.
    // Values returned are relative to the range start!
    pub fn binary_search_in_range_by(
        &self,
        predicate: impl FnMut(&T) -> Ordering,
        range: Range<usize>,
    ) -> Option<Result<usize, usize>> {
        if range.end > self.len() {
            return None;
        }
        if range.end < range.start {
            return None;
        }
        // Safety: We bounds checked above: end is in-bounds or len, and start is <= end
        let range_absolute =
            unsafe { self.binary_search_in_range_unchecked(predicate, range.clone()) };
        // The values returned are relative to the range start
        Some(
            range_absolute
                .map(|o| o - range.start)
                .map_err(|e| e - range.start),
        )
    }

    /// Safety: range must be in range for the slice (start <= len, end <= len, start <= end)
    unsafe fn binary_search_in_range_unchecked(
        &self,
        mut predicate: impl FnMut(&T) -> Ordering,
        range: Range<usize>,
    ) -> Result<usize, usize> {
        // Function invariant: size is always end - start
        let mut start = range.start;
        let mut end = range.end;
        let mut size;

        // Loop invariant: 0 <= start < end <= len
        // This invariant is initialized by the function safety invariants and the loop condition
        while start < end {
            size = end - start;
            // This establishes mid < end (which implies mid < len)
            // size is end - start. start + size is end (which is <= len).
            // mid = start + size/2 will be less than end
            let mid = start + size / 2;

            // Safety: mid is < end <= len, so in-range
            let cmp = predicate(self.get_unchecked(mid));

            match cmp {
                Ordering::Less => {
                    // This retains the loop invariant since it
                    // increments start, and we already have 0 <= start
                    // start < end is enforced by the loop condition
                    start = mid + 1;
                }
                Ordering::Greater => {
                    // mid < end, so this decreases end.
                    // This means end <= len is still true, and
                    // end > start is enforced by the loop condition
                    end = mid;
                }
                Ordering::Equal => return Ok(mid),
            }
        }
        Err(start)
    }
}

/// Collects the bytes for a VarZeroSlice into a Vec.
pub fn get_serializable_bytes_non_empty<T, A, F>(elements: &[A]) -> Option<Vec<u8>>
where
    T: VarULE + ?Sized,
    A: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    debug_assert!(!elements.is_empty());
    let len = compute_serializable_len::<T, A, F>(elements)?;
    debug_assert!(
        len >= F::Len::SIZE as u32,
        "Must have at least F::Len::SIZE bytes to hold the length of the vector"
    );
    let mut output: Vec<u8> = alloc::vec![0; len as usize];
    write_serializable_bytes::<T, A, F>(elements, &mut output);
    Some(output)
}

/// Writes the bytes for a VarZeroLengthlessSlice into an output buffer.
/// Usable for a VarZeroSlice if you first write the length bytes.
///
/// Every byte in the buffer will be initialized after calling this function.
///
/// # Panics
///
/// Panics if the buffer is not exactly the correct length.
pub fn write_serializable_bytes_without_length<T, A, F>(elements: &[A], output: &mut [u8])
where
    T: VarULE + ?Sized,
    A: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    assert!(elements.len() <= F::Len::MAX_VALUE as usize);
    if elements.is_empty() {
        return;
    }

    // idx_offset = offset from the start of the buffer for the next index
    let mut idx_offset: usize = 0;
    // first_dat_offset = offset from the start of the buffer of the first data block
    let first_dat_offset: usize = idx_offset + (elements.len() - 1) * F::Index::SIZE;
    // dat_offset = offset from the start of the buffer of the next data block
    let mut dat_offset: usize = first_dat_offset;

    for (i, element) in elements.iter().enumerate() {
        let element_len = element.encode_var_ule_len();

        // The first index is always 0. We don't write it, or update the idx offset.
        if i != 0 {
            let idx_limit = idx_offset + F::Index::SIZE;
            #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
            let idx_slice = &mut output[idx_offset..idx_limit];
            // VZV expects data offsets to be stored relative to the first data block
            let idx = dat_offset - first_dat_offset;
            assert!(idx <= F::Index::MAX_VALUE as usize);
            #[allow(clippy::expect_used)] // this function is explicitly panicky
            let bytes_to_write = F::Index::iule_from_usize(idx).expect(F::Index::TOO_LARGE_ERROR);
            idx_slice.copy_from_slice(ULE::slice_as_bytes(&[bytes_to_write]));

            idx_offset = idx_limit;
        }

        let dat_limit = dat_offset + element_len;
        #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
        let dat_slice = &mut output[dat_offset..dat_limit];
        element.encode_var_ule_write(dat_slice);
        debug_assert_eq!(T::validate_bytes(dat_slice), Ok(()));
        dat_offset = dat_limit;
    }

    debug_assert_eq!(idx_offset, F::Index::SIZE * (elements.len() - 1));
    assert_eq!(dat_offset, output.len());
}

/// Writes the bytes for a VarZeroSlice into an output buffer.
///
/// Every byte in the buffer will be initialized after calling this function.
///
/// # Panics
///
/// Panics if the buffer is not exactly the correct length.
pub fn write_serializable_bytes<T, A, F>(elements: &[A], output: &mut [u8])
where
    T: VarULE + ?Sized,
    A: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    if elements.is_empty() {
        return;
    }
    assert!(elements.len() <= F::Len::MAX_VALUE as usize);
    #[allow(clippy::expect_used)] // This function is explicitly panicky
    let num_elements_ule = F::Len::iule_from_usize(elements.len()).expect(F::Len::TOO_LARGE_ERROR);
    #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
    output[0..F::Len::SIZE].copy_from_slice(ULE::slice_as_bytes(&[num_elements_ule]));

    #[allow(clippy::indexing_slicing)] // Function contract allows panicky behavior
    write_serializable_bytes_without_length::<T, A, F>(elements, &mut output[F::Len::SIZE..]);
}

pub fn compute_serializable_len_without_length<T, A, F>(elements: &[A]) -> Option<u32>
where
    T: VarULE + ?Sized,
    A: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    let elements_len = elements.len();
    let Some(elements_len_minus_one) = elements_len.checked_sub(1) else {
        // Empty vec is optimized to an empty byte representation
        return Some(0);
    };
    let idx_len: u32 = u32::try_from(elements_len_minus_one)
        .ok()?
        .checked_mul(F::Index::SIZE as u32)?;
    let data_len: u32 = elements
        .iter()
        .map(|v| u32::try_from(v.encode_var_ule_len()).ok())
        .try_fold(0u32, |s, v| s.checked_add(v?))?;
    let ret = idx_len.checked_add(data_len);
    if let Some(r) = ret {
        if r >= F::Index::MAX_VALUE {
            return None;
        }
    }
    ret
}

pub fn compute_serializable_len<T, A, F>(elements: &[A]) -> Option<u32>
where
    T: VarULE + ?Sized,
    A: EncodeAsVarULE<T>,
    F: VarZeroVecFormat,
{
    compute_serializable_len_without_length::<T, A, F>(elements).map(|x| x + F::Len::SIZE as u32)
}