Expand description
Documentation on implementing custom VarULE types.
This module contains documentation for defining custom VarULE types, especially those using complex custom dynamically sized types.
In most cases you should be able to create custom VarULE types using
#[make_varule]
.
§Example
For example, if your regular stack type is:
use zerofrom::ZeroFrom;
use zerovec::ule::*;
use zerovec::ZeroVec;
#[derive(serde::Serialize, serde::Deserialize)]
struct Foo<'a> {
field1: char,
field2: u32,
#[serde(borrow)]
field3: ZeroVec<'a, u32>,
}
then the ULE type will be implemented as follows. Ideally, you should have
EncodeAsVarULE
and ZeroFrom
implementations on Foo
pertaining to FooULE
,
as well as a Serialize
impl on FooULE
and a Deserialize
impl on Box<FooULE>
to enable human-readable serialization and deserialization.
use zerovec::{ZeroVec, VarZeroVec, ZeroSlice};
use zerovec::ule::*;
use zerofrom::ZeroFrom;
use core::mem;
// Must be repr(C, packed) for safety of VarULE!
// Must also only contain ULE types
#[repr(C, packed)]
struct FooULE {
field1: <char as AsULE>::ULE,
field2: <u32 as AsULE>::ULE,
field3: ZeroSlice<u32>,
}
// Safety (based on the safety checklist on the VarULE trait):
// 1. FooULE does not include any uninitialized or padding bytes. (achieved by `#[repr(C, packed)]` on
// a struct with only ULE fields)
// 2. FooULE is aligned to 1 byte. (achieved by `#[repr(C, packed)]` on
// a struct with only ULE fields)
// 3. The impl of `validate_bytes()` returns an error if any byte is not valid.
// 4. The impl of `validate_bytes()` returns an error if the slice cannot be used in its entirety
// 5. The impl of `from_bytes_unchecked()` returns a reference to the same data.
// 6. The other VarULE methods use the default impl.
// 7. FooULE byte equality is semantic equality
unsafe impl VarULE for FooULE {
fn validate_bytes(bytes: &[u8]) -> Result<(), UleError> {
// validate each field
<char as AsULE>::ULE::validate_bytes(&bytes[0..3]).map_err(|_| UleError::parse::<Self>())?;
<u32 as AsULE>::ULE::validate_bytes(&bytes[3..7]).map_err(|_| UleError::parse::<Self>())?;
let _ = ZeroVec::<u32>::parse_bytes(&bytes[7..]).map_err(|_| UleError::parse::<Self>())?;
Ok(())
}
unsafe fn from_bytes_unchecked(bytes: &[u8]) -> &Self {
let ptr = bytes.as_ptr();
let len = bytes.len();
// subtract the length of the char and u32 to get the length of the array
let len_new = (len - 7) / 4;
// it's hard constructing custom DSTs, we fake a pointer/length construction
// eventually we can use the Pointer::Metadata APIs when they stabilize
let fake_slice = core::ptr::slice_from_raw_parts(ptr as *const <u32 as AsULE>::ULE, len_new);
&*(fake_slice as *const Self)
}
}
unsafe impl EncodeAsVarULE<FooULE> for Foo<'_> {
fn encode_var_ule_as_slices<R>(&self, cb: impl FnOnce(&[&[u8]]) -> R) -> R {
// take each field, convert to ULE byte slices, and pass them through
cb(&[<char as AsULE>::ULE::slice_as_bytes(&[self.field1.to_unaligned()]),
<u32 as AsULE>::ULE::slice_as_bytes(&[self.field2.to_unaligned()]),
// the ZeroVec is already in the correct slice format
self.field3.as_bytes()])
}
}
impl<'a> ZeroFrom<'a, FooULE> for Foo<'a> {
fn zero_from(other: &'a FooULE) -> Self {
Self {
field1: AsULE::from_unaligned(other.field1),
field2: AsULE::from_unaligned(other.field2),
field3: ZeroFrom::zero_from(&other.field3),
}
}
}
impl serde::Serialize for FooULE
{
fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
where
S: serde::Serializer,
{
Foo::zero_from(self).serialize(serializer)
}
}
impl<'de> serde::Deserialize<'de> for Box<FooULE>
{
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
where
D: serde::Deserializer<'de>,
{
let mut foo = Foo::deserialize(deserializer)?;
Ok(encode_varule_to_box(&foo))
}
}
fn main() {
let mut foos = [Foo {field1: 'u', field2: 983, field3: ZeroVec::alloc_from_slice(&[1212,2309,500,7000])},
Foo {field1: 'l', field2: 1010, field3: ZeroVec::alloc_from_slice(&[1932, 0, 8888, 91237])}];
let vzv = VarZeroVec::<_>::from(&foos);
assert_eq!(char::from_unaligned(vzv.get(0).unwrap().field1), 'u');
assert_eq!(u32::from_unaligned(vzv.get(0).unwrap().field2), 983);
assert_eq!(&vzv.get(0).unwrap().field3, &[1212,2309,500,7000][..]);
assert_eq!(char::from_unaligned(vzv.get(1).unwrap().field1), 'l');
assert_eq!(u32::from_unaligned(vzv.get(1).unwrap().field2), 1010);
assert_eq!(&vzv.get(1).unwrap().field3, &[1932, 0, 8888, 91237][..]);
}