1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

// Provider structs must be stable
#![allow(clippy::exhaustive_structs, clippy::exhaustive_enums)]

use zerovec::{
    maps::ZeroMapKV,
    ule::{AsULE, UleError, ULE},
};

use crate::dimension::provider::units_essentials::CompoundCount;

#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize))]
#[cfg_attr(feature = "datagen", derive(serde::Serialize, databake::Bake))]
#[cfg_attr(feature = "datagen", databake(path = icu_experimental::dimension::provider::pattern_key))]
#[repr(u8)]
pub enum PowerValue {
    Two,
    Three,
}

#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Debug)]
#[cfg_attr(feature = "serde", derive(serde::Deserialize))]
#[cfg_attr(feature = "datagen", derive(serde::Serialize, databake::Bake))]
#[cfg_attr(feature = "datagen", databake(path = icu_experimental::dimension::provider::pattern_key))]
pub enum PatternKey {
    Binary(u8),
    Decimal(i8),
    Power {
        power: PowerValue,
        count: CompoundCount,
    },
}

/// [`PatternKeyULE`] is a type optimized for efficient storage and
/// deserialization of [`PatternKey`] using the `ZeroVec` model.
///
/// The serialization model packages the pattern item in a single byte.
///
/// The first two bits (b7 & b6) determine the variant of the pattern key:
/// - `00`: `Binary`
/// - `01`: `Decimal`
/// - `10`: `Power`
/// - `11`: Forbidden
///
/// The next 6 bits (b5 to b0) determine the value of the pattern key:
/// - For `Binary`, the value is mapped directly to the pattern value.
/// - For `Decimal`:
///     - b5 is determining the sign of the value. if b5 is 0, the value is positive. if b5 is 1, the value is negative.
///     - b4 to b0 are determining the magnitude of the value.
/// - For `Power`:
///     - b5 and b4 represent the power value, which can be `10` to represent `Two` and `11` to represent `Three`.
///     - b3 to b0 represent the count value, which can be:
///         - `0000`: Zero
///         - `0001`: One
///         - `0010`: Two
///         - `0011`: Few
///         - `0100`: Many
///         - `0101`: Other
///     - Note: In the `Power` case, b3 is always 0, and when b2 is 1, b1 must be 0.
#[derive(Copy, Clone, PartialOrd, Ord, PartialEq, Eq, Debug)]
pub struct PatternKeyULE(u8);

// Safety (based on the safety checklist on the ULE trait):
//  1. PatternKeyULE does not include any uninitialized or padding bytes.
//     (achieved by `#[repr(transparent)]` on a ULE type)
//  2. PatternKeyULE is aligned to 1 byte.
//     (achieved by `#[repr(transparent)]` on a ULE type)
//  3. The impl of validate_byte_slice() returns an error if any byte is not valid.
//  4. The impl of validate_byte_slice() returns an error if there are extra bytes.
//  5. The other ULE methods use the default impl.
//  6. PatternKeyULE byte equality is semantic equality.
unsafe impl ULE for PatternKeyULE {
    fn validate_byte_slice(bytes: &[u8]) -> Result<(), zerovec::ule::UleError> {
        for &byte in bytes.iter() {
            // Ensure the first two bits (b7 & b6) are not 11.
            if (byte & 0b1100_0000) == 0b1100_0000 {
                return Err(UleError::parse::<Self>());
            }

            // For the `Power` variant:
            //      b5 & b4 must be 10 or 11. (this means that b5 must be 1)
            //      b3 must be 0.
            //      When b2 is 1, b1 must be 0.
            if (byte & 0b1100_0000) == 0b1000_0000 {
                // b5 must be 1
                if (byte & 0b0010_0000) == 0 {
                    return Err(UleError::parse::<Self>());
                }

                // b3 must be 0
                if (byte & 0b0000_1000) != 0 {
                    return Err(UleError::parse::<Self>());
                }

                // If b2 is 1, b1 must be 0
                if (byte & 0b0000_0100) != 0 && (byte & 0b0000_0010) != 0 {
                    return Err(UleError::parse::<Self>());
                }
            }
        }

        Ok(())
    }
}

impl AsULE for PatternKey {
    type ULE = PatternKeyULE;

    fn to_unaligned(self) -> Self::ULE {
        let byte = match self {
            PatternKey::Binary(value) => value,
            PatternKey::Decimal(value) => {
                let sign = if value < 0 { 0b0010_0000 } else { 0 };
                debug_assert!(value > -32 && value < 32);
                (0b01 << 6) | sign | (value.unsigned_abs() & 0b0001_1111)
            }
            PatternKey::Power { power, count } => {
                let power_bits = {
                    match power {
                        PowerValue::Two => 0b10 << 4,
                        PowerValue::Three => 0b11 << 4,
                    }
                };
                // Combine the bits to form the final byte
                (0b10 << 6) | power_bits | count as u8
            }
        };

        PatternKeyULE(byte)
    }

    fn from_unaligned(unaligned: Self::ULE) -> Self {
        let byte = unaligned.0;

        let variant = (byte & 0b1100_0000) >> 6;
        let value = byte & 0b0011_1111;

        match variant {
            0b00 => PatternKey::Binary(value),
            0b01 => match value & 0b0010_0000 {
                0b0000_0000 => PatternKey::Decimal(value as i8),
                0b0010_0000 => PatternKey::Decimal(-((value & 0b0001_1111) as i8)),
                _ => unreachable!(),
            },
            0b10 => {
                let power = match value & 0b0011_0000 {
                    0b0010_0000 => PowerValue::Two,
                    0b0011_0000 => PowerValue::Three,
                    _ => unreachable!(),
                };
                let count = value & 0b0000_1111;
                PatternKey::Power {
                    power,
                    count: count.into(),
                }
            }
            _ => unreachable!(),
        }
    }
}

impl<'a> ZeroMapKV<'a> for PatternKey {
    type Container = zerovec::ZeroVec<'a, PatternKey>;
    type Slice = zerovec::ZeroSlice<PatternKey>;
    type GetType = <PatternKey as AsULE>::ULE;
    type OwnedType = PatternKey;
}

#[test]
fn test_pattern_key_ule() {
    use PowerValue::{Three, Two};

    let binary = PatternKey::Binary(0b0000_1111);
    let binary_ule = binary.to_unaligned();
    PatternKeyULE::validate_byte_slice(&[binary_ule.0]).unwrap();
    assert_eq!(binary_ule.0, 0b0000_1111);

    let decimal = PatternKey::Decimal(0b0000_1111);
    let decimal_ule = decimal.to_unaligned();
    PatternKeyULE::validate_byte_slice(&[decimal_ule.0]).unwrap();
    assert_eq!(decimal_ule.0, 0b0100_1111);

    let power2 = PatternKey::Power {
        power: Two,
        count: CompoundCount::Two,
    };
    let power2_ule = power2.to_unaligned();
    PatternKeyULE::validate_byte_slice(&[power2_ule.0]).unwrap();
    assert_eq!(power2_ule.0, 0b1010_0010);

    let power3 = PatternKey::Power {
        power: Three,
        count: CompoundCount::Two,
    };
    let power3_ule = power3.to_unaligned();
    PatternKeyULE::validate_byte_slice(&[power3_ule.0]).unwrap();
    assert_eq!(power3_ule.0, 0b1011_0010);

    let binary = PatternKey::from_unaligned(binary_ule);
    assert_eq!(binary, PatternKey::Binary(0b0000_1111));

    let decimal = PatternKey::from_unaligned(decimal_ule);
    assert_eq!(decimal, PatternKey::Decimal(0b0000_1111));

    let power2 = PatternKey::from_unaligned(power2_ule);
    assert_eq!(
        power2,
        PatternKey::Power {
            power: Two,
            count: CompoundCount::Two,
        }
    );

    let power3 = PatternKey::from_unaligned(power3_ule);
    assert_eq!(
        power3,
        PatternKey::Power {
            power: Three,
            count: CompoundCount::Two,
        }
    );

    let decimal_neg_1 = PatternKey::Decimal(-1);
    let decimal_neg_1_ule = decimal_neg_1.to_unaligned();
    assert_eq!(decimal_neg_1_ule.0, 0b0110_0001);

    let decimal_neg_1 = PatternKey::from_unaligned(decimal_neg_1_ule);
    assert_eq!(decimal_neg_1, PatternKey::Decimal(-1));

    // Test invalid bytes
    let unvalidated_bytes = [0b1100_0000];
    assert_eq!(
        PatternKeyULE::validate_byte_slice(&unvalidated_bytes),
        Err(UleError::parse::<PatternKeyULE>())
    );

    let unvalidated_bytes = [0b1000_0000];
    assert_eq!(
        PatternKeyULE::validate_byte_slice(&unvalidated_bytes),
        Err(UleError::parse::<PatternKeyULE>())
    );
}