zerotrie/reader.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
//! # Internal layout of ZeroTrie
//!
//! A ZeroTrie is composed of a series of nodes stored in sequence in a byte slice.
//!
//! There are 4 types of nodes:
//!
//! 1. ASCII (`0xxxxxxx`): matches a literal ASCII byte.
//! 2. Span (`101xxxxx`): matches a span of non-ASCII bytes.
//! 3. Value (`100xxxxx`): associates a value with a string
//! 4. Branch (`11xxxxxx`): matches one of a set of bytes.
//!
//! Span, Value, and Branch nodes contain a varint, which has different semantics for each:
//!
//! - Span varint: length of the span
//! - Value varint: value associated with the string
//! - Branch varint: number of edges in the branch and width of the offset table
//!
//! If reading an ASCII, Span, or Branch node, one or more bytes are consumed from the input
//! string. If the next byte(s) in the input string do not match the node, we return `None`.
//! If reading a Value node, if the string is empty, return `Some(value)`; otherwise, we skip
//! the Value node and continue on to the next node.
//!
//! When a node is consumed, a shorter, well-formed ZeroTrie remains.
//!
//! ### Basic Example
//!
//! Here is an example ZeroTrie without branch nodes:
//!
//! ```
//! use zerotrie::ZeroTriePerfectHash;
//!
//! let bytes = [
//! b'a', // ASCII literal
//! 0b10001010, // value 10
//! b'b', // ASCII literal
//! 0b10100011, // span of 3
//! 0x81, // first byte in span
//! 0x91, // second byte in span
//! 0xA1, // third and final byte in span
//! 0b10000100, // value 4
//! ];
//!
//! let trie = ZeroTriePerfectHash::from_bytes(&bytes);
//!
//! // First value: "a" → 10
//! assert_eq!(trie.get(b"a"), Some(10));
//!
//! // Second value: "ab\x81\x91\xA1" → 4
//! assert_eq!(trie.get(b"ab\x81\x91\xA1"), Some(4));
//!
//! // A few examples of strings that do NOT have values in the trie:
//! assert_eq!(trie.get(b"ab"), None);
//! assert_eq!(trie.get(b"b"), None);
//! assert_eq!(trie.get(b"b\x81\x91\xA1"), None);
//! ```
//!
//! ## Branch Nodes
//!
//! There are two types of branch nodes: binary search and perfect hash. `ZeroTrieSimpleAscii`
//! contains only binary search nodes, whereas `ZeroTriePerfectHash` can contain either.
//!
//! The head node of the branch has a varint that encodes two things:
//!
//! - Bottom 8 bits: number of edges in the branch (`N`); if N = 0, set N to 256
//! - Bits 9 and 10: width of the offset table (`W`)
//!
//! Note that N is always in the range [1, 256]. There can't be more than 256 edges because
//! there are only 256 unique u8 values.
//!
//! A few examples of the head node of the branch:
//!
//! - `0b11000000`: varint bits `0`: N = 0 which means N = 256; W = 0
//! - `0b11000110`: varint bits `110`: N = 6; W = 0
//! - `0b11100000 0b00000101`: varint bits `1000101`: N = 69; W = 0
//! - `0b11100010 0b00000000`: varint bits `101000000`: N = 64; W = 1
//!
//! In `ZeroTriePerfectHash`, if N <= 15, the branch is assumed to be a binary search, and if
//! N > 15, the branch is assumed to be a perfect hash.
//!
//! ### Binary Search Branch Nodes
//!
//! A binary search branch node is used when:
//!
//! 1. The trie is a `ZeroTrieSimpleAscii`, OR
//! 2. There are 15 or fewer items in the branch.
//!
//! The head branch node is followed by N sorted bytes. When evaluating a branch node, one byte
//! is consumed from the input. If it is one of the N sorted bytes (scanned using binary search),
//! the index `i` of the byte within the list is used to index into the offset table (described
//! below). If the byte is not in the list, the string is not in the trie, so return `None`.
//!
//! ### Perfect Hash Branch Nodes
//!
//! A perfect hash branch node is used when:
//!
//! 1. The trie is NOT a `ZeroTrieSimpleAscii`, AND
//! 2. There are 16 or more items in the branch.
//!
//! The head branch node is followed by 1 byte containing parameter `p`, N bytes containing
//! parameters `q`, and N bytes containing the bytes to match. From these parameters, either an
//! index within the hash table `i` is resolved and used as input to index into the offset
//! table (described below), or the value is determined to not be present and `None` is
//! returned. For more detail on resolving the perfect hash function, see [`crate::byte_phf`].
//!
//! ### Offset Tables
//!
//! The _offset table_ encodes the range of the remaining buffer containing the trie reachable
//! from the byte matched in the branch node. Both types of branch nodes include an offset
//! table followig the key lookup. Given the index `i` from the first step, the range
//! `[s_i, s_(i+1))` brackets the next step in the trie.
//!
//! Offset tables utilize the `W` parameter stored in the branch head node. The special case
//! when `W == 0`, with `N - 1` bytes, is easiest to understand:
//!
//! **Offset table, W = 0:** `[s_1, s_2, ..., s_(N-1)]`
//!
//! Note that `s_0` is always 0 and `s_N` is always the length of the remaining slice, so those
//! values are not explicitly included in the offset table.
//!
//! When W > 0, the high and low bits of the offsets are in separate bytes, arranged as follows:
//!
//! **Generalized offset table:** `[a_1, a_2, ..., a_(N-1), b_1, b_2, ..., b_(N-1), c_1, ...]`
//!
//! where `s_i = (a_i << 8 + b_i) << 8 + c_i ...` (high bits first, low bits last)
//!
//! ### Advanced Example
//!
//! The following trie encodes the following map. It has multiple varints and branch nodes, which
//! are all binary search with W = 0. Note that there is a value for the empty string.
//!
//! - "" → 0
//! - "axb" → 100
//! - "ayc" → 2
//! - "azd" → 3
//! - "bxe" → 4
//! - "bxefg" → 500
//! - "bxefh" → 6
//! - "bxei" → 7
//! - "bxeikl" → 8
//!
//! ```
//! use zerotrie::ZeroTrieSimpleAscii;
//!
//! let bytes = [
//! 0b10000000, // value 0
//! 0b11000010, // branch of 2
//! b'a', //
//! b'b', //
//! 13, //
//! 0b11000011, // start of 'a' subtree: branch of 3
//! b'x', //
//! b'y', //
//! b'z', //
//! 3, //
//! 5, //
//! b'b', //
//! 0b10010000, // value 100 (lead)
//! 0x54, // value 100 (trail)
//! b'c', //
//! 0b10000010, // value 2
//! b'd', //
//! 0b10000011, // value 3
//! b'x', // start of 'b' subtree
//! b'e', //
//! 0b10000100, // value 4
//! 0b11000010, // branch of 2
//! b'f', //
//! b'i', //
//! 7, //
//! 0b11000010, // branch of 2
//! b'g', //
//! b'h', //
//! 2, //
//! 0b10010011, // value 500 (lead)
//! 0x64, // value 500 (trail)
//! 0b10000110, // value 6
//! 0b10000111, // value 7
//! b'k', //
//! b'l', //
//! 0b10001000, // value 8
//! ];
//!
//! let trie = ZeroTrieSimpleAscii::from_bytes(&bytes);
//!
//! // Assert that the specified items are in the map
//! assert_eq!(trie.get(b""), Some(0));
//! assert_eq!(trie.get(b"axb"), Some(100));
//! assert_eq!(trie.get(b"ayc"), Some(2));
//! assert_eq!(trie.get(b"azd"), Some(3));
//! assert_eq!(trie.get(b"bxe"), Some(4));
//! assert_eq!(trie.get(b"bxefg"), Some(500));
//! assert_eq!(trie.get(b"bxefh"), Some(6));
//! assert_eq!(trie.get(b"bxei"), Some(7));
//! assert_eq!(trie.get(b"bxeikl"), Some(8));
//!
//! // Assert that some other items are not in the map
//! assert_eq!(trie.get(b"a"), None);
//! assert_eq!(trie.get(b"bx"), None);
//! assert_eq!(trie.get(b"xba"), None);
//! ```
use crate::byte_phf::PerfectByteHashMap;
use crate::cursor::AsciiProbeResult;
use crate::helpers::*;
use crate::options::*;
use crate::varint::read_varint_meta2;
use crate::varint::read_varint_meta3;
#[cfg(feature = "alloc")]
use alloc::string::String;
/// Given a slice starting with an offset table, returns the trie for the given index.
///
/// Arguments:
/// - `trie` = a trie pointing at an offset table (after the branch node and search table)
/// - `i` = the desired index within the offset table
/// - `n` = the number of items in the offset table
/// - `w` = the width of the offset table items minus one
#[inline]
fn get_branch(mut trie: &[u8], i: usize, n: usize, mut w: usize) -> &[u8] {
let mut p = 0usize;
let mut q = 0usize;
loop {
let indices;
(indices, trie) = trie.debug_split_at(n - 1);
p = (p << 8)
+ if i == 0 {
0
} else {
*indices.get(i - 1).debug_unwrap_or(&0) as usize
};
q = match indices.get(i) {
Some(x) => (q << 8) + *x as usize,
None => trie.len(),
};
if w == 0 {
break;
}
w -= 1;
}
trie.get(p..q).debug_unwrap_or(&[])
}
/// Version of [`get_branch()`] specialized for the case `w == 0` for performance
#[inline]
fn get_branch_w0(mut trie: &[u8], i: usize, n: usize) -> &[u8] {
let indices;
(indices, trie) = trie.debug_split_at(n - 1);
let p = if i == 0 {
0
} else {
*indices.get(i - 1).debug_unwrap_or(&0) as usize
};
let q = match indices.get(i) {
Some(x) => *x as usize,
None => trie.len(),
};
trie.get(p..q).debug_unwrap_or(&[])
}
/// The node type. See the module-level docs for more explanation of the four node types.
enum NodeType {
/// An ASCII node. Contains a single literal ASCII byte and no varint.
Ascii,
/// A span node. Contains a varint indicating how big the span is.
Span,
/// A value node. Contains a varint representing the value.
Value,
/// A branch node. Contains a varint of the number of output nodes, plus W in the high bits.
Branch,
}
impl core::fmt::Debug for NodeType {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
use NodeType::*;
f.write_str(match *self {
Ascii => "a",
Span => "s",
Value => "v",
Branch => "m",
})
}
}
#[inline]
fn byte_type(b: u8) -> NodeType {
match b & 0b11100000 {
0b10000000 => NodeType::Value,
0b10100000 => NodeType::Span,
0b11000000 => NodeType::Branch,
0b11100000 => NodeType::Branch,
_ => NodeType::Ascii,
}
}
#[inline]
pub(crate) fn get_parameterized<T: ZeroTrieWithOptions + ?Sized>(
mut trie: &[u8],
mut ascii: &[u8],
) -> Option<usize> {
loop {
let (b, x, i, search);
(b, trie) = trie.split_first()?;
let byte_type = byte_type(*b);
(x, trie) = match byte_type {
NodeType::Ascii => (0, trie),
NodeType::Span => {
if matches!(T::OPTIONS.ascii_mode, AsciiMode::BinarySpans) {
read_varint_meta3(*b, trie)
} else {
debug_assert!(false, "Span node found in ASCII trie!");
return None;
}
}
NodeType::Value => read_varint_meta3(*b, trie),
NodeType::Branch => read_varint_meta2(*b, trie),
};
if let Some((c, temp)) = ascii.split_first() {
if matches!(byte_type, NodeType::Ascii) {
let is_match = if matches!(T::OPTIONS.case_sensitivity, CaseSensitivity::IgnoreCase)
{
b.eq_ignore_ascii_case(c)
} else {
b == c
};
if is_match {
// Matched a byte
ascii = temp;
continue;
} else {
// Byte that doesn't match
return None;
}
}
if matches!(byte_type, NodeType::Value) {
// Value node, but not at end of string
continue;
}
if matches!(T::OPTIONS.ascii_mode, AsciiMode::BinarySpans)
&& matches!(byte_type, NodeType::Span)
{
let (trie_span, ascii_span);
(trie_span, trie) = trie.debug_split_at(x);
(ascii_span, ascii) = ascii.maybe_split_at(x)?;
if trie_span == ascii_span {
// Matched a byte span
continue;
} else {
// Byte span that doesn't match
return None;
}
}
// Branch node
let (x, w) = if x >= 256 { (x & 0xff, x >> 8) } else { (x, 0) };
let w = if matches!(T::OPTIONS.capacity_mode, CapacityMode::Extended) {
w
} else {
// See the table below regarding this assertion
debug_assert!(w <= 3, "get: w > 3 but we assume w <= 3");
w & 0x3
};
let x = if x == 0 { 256 } else { x };
if matches!(T::OPTIONS.phf_mode, PhfMode::BinaryOnly) || x < 16 {
// binary search
(search, trie) = trie.debug_split_at(x);
let bsearch_result =
if matches!(T::OPTIONS.case_sensitivity, CaseSensitivity::IgnoreCase) {
search.binary_search_by_key(&c.to_ascii_lowercase(), |x| {
x.to_ascii_lowercase()
})
} else {
search.binary_search(c)
};
i = bsearch_result.ok()?;
} else {
// phf
(search, trie) = trie.debug_split_at(x * 2 + 1);
i = PerfectByteHashMap::from_store(search).get(*c)?;
}
trie = if w == 0 {
get_branch_w0(trie, i, x)
} else {
get_branch(trie, i, x, w)
};
ascii = temp;
continue;
} else {
if matches!(byte_type, NodeType::Value) {
// Value node at end of string
return Some(x);
}
return None;
}
}
}
// DISCUSS: This function is 7% faster *on aarch64* if we assert a max on w.
//
// | Bench | No Assert, x86_64 | No Assert, aarch64 | Assertion, x86_64 | Assertion, aarch64 |
// |---------------|-------------------|--------------------|-------------------|--------------------|
// | basic | ~187.51 ns | ~97.586 ns | ~199.11 ns | ~99.236 ns |
// | subtags_10pct | ~9.5557 µs | ~4.8696 µs | ~9.5779 µs | ~4.5649 µs |
// | subtags_full | ~137.75 µs | ~76.016 µs | ~142.02 µs | ~70.254 µs |
/// Steps one node into the trie assuming all branch nodes are binary search and that
/// there are no span nodes.
///
/// The input-output argument `trie` starts at the original trie and ends pointing to
/// the sub-trie reachable by `c`.
#[inline]
pub(crate) fn step_parameterized<T: ZeroTrieWithOptions + ?Sized>(
trie: &mut &[u8],
c: u8,
) -> Option<u8> {
// Currently, the only option `step_parameterized` supports is `CaseSensitivity::IgnoreCase`.
// `AsciiMode::BinarySpans` is tricky because the state can no longer be simply a trie.
// If a span node is encountered, `None` is returned later in this function.
debug_assert!(
matches!(T::OPTIONS.ascii_mode, AsciiMode::AsciiOnly),
"Spans not yet implemented in step function"
);
// PHF can be easily implemented but the code is not yet reachable
debug_assert!(
matches!(T::OPTIONS.phf_mode, PhfMode::BinaryOnly),
"PHF not yet implemented in step function"
);
// Extended Capacity can be easily implemented but the code is not yet reachable
debug_assert!(
matches!(T::OPTIONS.capacity_mode, CapacityMode::Normal),
"Extended capacity not yet implemented in step function"
);
let (mut b, x, search);
loop {
(b, *trie) = match trie.split_first() {
Some(v) => v,
None => {
// Empty trie or only a value node
return None;
}
};
match byte_type(*b) {
NodeType::Ascii => {
let is_match = if matches!(T::OPTIONS.case_sensitivity, CaseSensitivity::IgnoreCase)
{
b.eq_ignore_ascii_case(&c)
} else {
*b == c
};
if is_match {
// Matched a byte
return Some(*b);
} else {
// Byte that doesn't match
*trie = &[];
return None;
}
}
NodeType::Branch => {
// Proceed to the branch node logic below
(x, *trie) = read_varint_meta2(*b, trie);
break;
}
NodeType::Span => {
// Question: Should we put the trie back into a valid state?
// Currently this code is unreachable so let's not worry about it.
debug_assert!(false, "Span node found in ASCII trie!");
return None;
}
NodeType::Value => {
// Skip the value node and go to the next node
(_, *trie) = read_varint_meta3(*b, trie);
continue;
}
};
}
// Branch node
let (x, w) = if x >= 256 { (x & 0xff, x >> 8) } else { (x, 0) };
// See comment above regarding this assertion
debug_assert!(w <= 3, "get: w > 3 but we assume w <= 3");
let w = w & 0x3;
let x = if x == 0 { 256 } else { x };
// Always use binary search
(search, *trie) = trie.debug_split_at(x);
let bsearch_result = if matches!(T::OPTIONS.case_sensitivity, CaseSensitivity::IgnoreCase) {
search.binary_search_by_key(&c.to_ascii_lowercase(), |x| x.to_ascii_lowercase())
} else {
search.binary_search(&c)
};
match bsearch_result {
Ok(i) => {
// Matched a byte
*trie = if w == 0 {
get_branch_w0(trie, i, x)
} else {
get_branch(trie, i, x, w)
};
Some(search[i])
}
Err(_) => {
// Byte that doesn't match
*trie = &[];
None
}
}
}
/// Steps one node into the trie, assuming all branch nodes are binary search and that
/// there are no span nodes, using an index.
///
/// The input-output argument `trie` starts at the original trie and ends pointing to
/// the sub-trie indexed by `index`.
#[inline]
pub(crate) fn probe_parameterized<T: ZeroTrieWithOptions + ?Sized>(
trie: &mut &[u8],
index: usize,
) -> Option<AsciiProbeResult> {
// Currently, the only option `step_parameterized` supports is `CaseSensitivity::IgnoreCase`.
// `AsciiMode::BinarySpans` is tricky because the state can no longer be simply a trie.
// If a span node is encountered, `None` is returned later in this function.
debug_assert!(
matches!(T::OPTIONS.ascii_mode, AsciiMode::AsciiOnly),
"Spans not yet implemented in step function"
);
// PHF can be easily implemented but the code is not yet reachable
debug_assert!(
matches!(T::OPTIONS.phf_mode, PhfMode::BinaryOnly),
"PHF not yet implemented in step function"
);
// Extended Capacity can be easily implemented but the code is not yet reachable
debug_assert!(
matches!(T::OPTIONS.capacity_mode, CapacityMode::Normal),
"Extended capacity not yet implemented in step function"
);
let (mut b, x, search);
loop {
(b, *trie) = match trie.split_first() {
Some(v) => v,
None => {
// Empty trie or only a value node
return None;
}
};
match byte_type(*b) {
NodeType::Ascii => {
if index > 0 {
*trie = &[];
return None;
}
return Some(AsciiProbeResult {
byte: *b,
total_siblings: 1,
});
}
NodeType::Branch => {
// Proceed to the branch node logic below
(x, *trie) = read_varint_meta2(*b, trie);
break;
}
NodeType::Span => {
// Question: Should we put the trie back into a valid state?
// Currently this code is unreachable so let's not worry about it.
debug_assert!(false, "Span node found in ASCII trie!");
return None;
}
NodeType::Value => {
// Skip the value node and go to the next node
(_, *trie) = read_varint_meta3(*b, trie);
continue;
}
};
}
// Branch node
let (x, w) = if x >= 256 { (x & 0xff, x >> 8) } else { (x, 0) };
debug_assert!(u8::try_from(x).is_ok());
let total_siblings = x as u8;
// See comment above regarding this assertion
debug_assert!(w <= 3, "get: w > 3 but we assume w <= 3");
let w = w & 0x3;
let x = if x == 0 { 256 } else { x };
if index >= x {
*trie = &[];
return None;
}
(search, *trie) = trie.debug_split_at(x);
*trie = if w == 0 {
get_branch_w0(trie, index, x)
} else {
get_branch(trie, index, x, w)
};
Some(AsciiProbeResult {
byte: search[index],
total_siblings,
})
}
/// Steps one node into the trie if the head node is a value node, returning the value.
/// If the head node is not a value node, no change is made.
///
/// The input-output argument `trie` starts at the original trie and ends pointing to
/// the sub-trie with the value node removed.
pub(crate) fn take_value(trie: &mut &[u8]) -> Option<usize> {
let (b, new_trie) = trie.split_first()?;
match byte_type(*b) {
NodeType::Ascii | NodeType::Span | NodeType::Branch => None,
NodeType::Value => {
let x;
(x, *trie) = read_varint_meta3(*b, new_trie);
Some(x)
}
}
}
#[cfg(feature = "alloc")]
use alloc::vec::Vec;
/// Iterator type for walking the byte sequences contained in a ZeroTrie.
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct ZeroTrieIterator<'a> {
/// Whether the PHF is enabled on this trie.
use_phf: bool,
/// Intermediate state during iteration:
/// 1. A trie (usually a slice of the original, bigger trie)
/// 2. The string that leads to the trie
/// 3. If the trie's lead node is a branch node, the current index being evaluated
state: Vec<(&'a [u8], Vec<u8>, usize)>,
}
#[cfg(feature = "alloc")]
impl<'a> ZeroTrieIterator<'a> {
pub(crate) fn new<S: AsRef<[u8]> + ?Sized>(store: &'a S, use_phf: bool) -> Self {
ZeroTrieIterator {
use_phf,
state: alloc::vec![(store.as_ref(), alloc::vec![], 0)],
}
}
}
#[cfg(feature = "alloc")]
impl Iterator for ZeroTrieIterator<'_> {
type Item = (Vec<u8>, usize);
fn next(&mut self) -> Option<Self::Item> {
let (mut trie, mut string, mut branch_idx);
(trie, string, branch_idx) = self.state.pop()?;
loop {
let (b, x, span, search);
let return_trie = trie;
(b, trie) = match trie.split_first() {
Some(tpl) => tpl,
None => {
// At end of current branch; step back to the branch node.
// If there are no more branches, we are finished.
(trie, string, branch_idx) = self.state.pop()?;
continue;
}
};
let byte_type = byte_type(*b);
if matches!(byte_type, NodeType::Ascii) {
string.push(*b);
continue;
}
(x, trie) = match byte_type {
NodeType::Ascii => (0, trie),
NodeType::Span | NodeType::Value => read_varint_meta3(*b, trie),
NodeType::Branch => read_varint_meta2(*b, trie),
};
if matches!(byte_type, NodeType::Span) {
(span, trie) = trie.debug_split_at(x);
string.extend(span);
continue;
}
if matches!(byte_type, NodeType::Value) {
let retval = string.clone();
// Return to this position on the next step
self.state.push((trie, string, 0));
return Some((retval, x));
}
// Match node
let (x, w) = if x >= 256 { (x & 0xff, x >> 8) } else { (x, 0) };
let x = if x == 0 { 256 } else { x };
if branch_idx + 1 < x {
// Return to this branch node at the next index
self.state
.push((return_trie, string.clone(), branch_idx + 1));
}
let byte = if x < 16 || !self.use_phf {
// binary search
(search, trie) = trie.debug_split_at(x);
debug_unwrap!(search.get(branch_idx), return None)
} else {
// phf
(search, trie) = trie.debug_split_at(x * 2 + 1);
debug_unwrap!(search.get(branch_idx + x + 1), return None)
};
string.push(*byte);
trie = if w == 0 {
get_branch_w0(trie, branch_idx, x)
} else {
get_branch(trie, branch_idx, x, w)
};
branch_idx = 0;
}
}
}
#[cfg(feature = "alloc")]
pub(crate) fn get_iter_phf<S: AsRef<[u8]> + ?Sized>(store: &S) -> ZeroTrieIterator<'_> {
ZeroTrieIterator::new(store, true)
}
/// # Panics
/// Panics if the trie contains non-ASCII items.
#[cfg(feature = "alloc")]
#[allow(clippy::type_complexity)]
pub(crate) fn get_iter_ascii_or_panic<S: AsRef<[u8]> + ?Sized>(
store: &S,
) -> core::iter::Map<ZeroTrieIterator<'_>, fn((Vec<u8>, usize)) -> (String, usize)> {
ZeroTrieIterator::new(store, false).map(|(k, v)| {
#[allow(clippy::unwrap_used)] // in signature of function
let ascii_str = String::from_utf8(k).unwrap();
(ascii_str, v)
})
}