zerotrie/
reader.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

//! # Internal layout of ZeroTrie
//!
//! A ZeroTrie is composed of a series of nodes stored in sequence in a byte slice.
//!
//! There are 4 types of nodes:
//!
//! 1. ASCII (`0xxxxxxx`): matches a literal ASCII byte.
//! 2. Span (`101xxxxx`): matches a span of non-ASCII bytes.
//! 3. Value (`100xxxxx`): associates a value with a string
//! 4. Branch (`11xxxxxx`): matches one of a set of bytes.
//!
//! Span, Value, and Branch nodes contain a varint, which has different semantics for each:
//!
//! - Span varint: length of the span
//! - Value varint: value associated with the string
//! - Branch varint: number of edges in the branch and width of the offset table
//!
//! If reading an ASCII, Span, or Branch node, one or more bytes are consumed from the input
//! string. If the next byte(s) in the input string do not match the node, we return `None`.
//! If reading a Value node, if the string is empty, return `Some(value)`; otherwise, we skip
//! the Value node and continue on to the next node.
//!
//! When a node is consumed, a shorter, well-formed ZeroTrie remains.
//!
//! ### Basic Example
//!
//! Here is an example ZeroTrie without branch nodes:
//!
//! ```
//! use zerotrie::ZeroTriePerfectHash;
//!
//! let bytes = [
//!     b'a',       // ASCII literal
//!     0b10001010, // value 10
//!     b'b',       // ASCII literal
//!     0b10100011, // span of 3
//!     0x81,       // first byte in span
//!     0x91,       // second byte in span
//!     0xA1,       // third and final byte in span
//!     0b10000100, // value 4
//! ];
//!
//! let trie = ZeroTriePerfectHash::from_bytes(&bytes);
//!
//! // First value: "a" → 10
//! assert_eq!(trie.get(b"a"), Some(10));
//!
//! // Second value: "ab\x81\x91\xA1" → 4
//! assert_eq!(trie.get(b"ab\x81\x91\xA1"), Some(4));
//!
//! // A few examples of strings that do NOT have values in the trie:
//! assert_eq!(trie.get(b"ab"), None);
//! assert_eq!(trie.get(b"b"), None);
//! assert_eq!(trie.get(b"b\x81\x91\xA1"), None);
//! ```
//!
//! ## Branch Nodes
//!
//! There are two types of branch nodes: binary search and perfect hash. `ZeroTrieSimpleAscii`
//! contains only binary search nodes, whereas `ZeroTriePerfectHash` can contain either.
//!
//! The head node of the branch has a varint that encodes two things:
//!
//! - Bottom 8 bits: number of edges in the branch (`N`); if N = 0, set N to 256
//! - Bits 9 and 10: width of the offset table (`W`)
//!
//! Note that N is always in the range [1, 256]. There can't be more than 256 edges because
//! there are only 256 unique u8 values.
//!
//! A few examples of the head node of the branch:
//!
//! - `0b11000000`: varint bits `0`: N = 0 which means N = 256; W = 0
//! - `0b11000110`: varint bits `110`: N = 6; W = 0
//! - `0b11100000 0b00000101`: varint bits `1000101`: N = 69; W = 0
//! - `0b11100010 0b00000000`: varint bits `101000000`: N = 64; W = 1
//!
//! In `ZeroTriePerfectHash`, if N <= 15, the branch is assumed to be a binary search, and if
//! N > 15, the branch is assumed to be a perfect hash.
//!
//! ### Binary Search Branch Nodes
//!
//! A binary search branch node is used when:
//!
//! 1. The trie is a `ZeroTrieSimpleAscii`, OR
//! 2. There are 15 or fewer items in the branch.
//!
//! The head branch node is followed by N sorted bytes. When evaluating a branch node, one byte
//! is consumed from the input. If it is one of the N sorted bytes (scanned using binary search),
//! the index `i` of the byte within the list is used to index into the offset table (described
//! below). If the byte is not in the list, the string is not in the trie, so return `None`.
//!
//! ### Perfect Hash Branch Nodes
//!
//! A perfect hash branch node is used when:
//!
//! 1. The trie is NOT a `ZeroTrieSimpleAscii`, AND
//! 2. There are 16 or more items in the branch.
//!
//! The head branch node is followed by 1 byte containing parameter `p`, N bytes containing
//! parameters `q`, and N bytes containing the bytes to match. From these parameters, either an
//! index within the hash table `i` is resolved and used as input to index into the offset
//! table (described below), or the value is determined to not be present and `None` is
//! returned. For more detail on resolving the perfect hash function, see [`crate::byte_phf`].
//!
//! ### Offset Tables
//!
//! The _offset table_ encodes the range of the remaining buffer containing the trie reachable
//! from the byte matched in the branch node. Both types of branch nodes include an offset
//! table followig the key lookup. Given the index `i` from the first step, the range
//! `[s_i, s_(i+1))` brackets the next step in the trie.
//!
//! Offset tables utilize the `W` parameter stored in the branch head node. The special case
//! when `W == 0`, with `N - 1` bytes, is easiest to understand:
//!
//! **Offset table, W = 0:** `[s_1, s_2, ..., s_(N-1)]`
//!
//! Note that `s_0` is always 0 and `s_N` is always the length of the remaining slice, so those
//! values are not explicitly included in the offset table.
//!
//! When W > 0, the high and low bits of the offsets are in separate bytes, arranged as follows:
//!
//! **Generalized offset table:** `[a_1, a_2, ..., a_(N-1), b_1, b_2, ..., b_(N-1), c_1, ...]`
//!
//! where `s_i = (a_i << 8 + b_i) << 8 + c_i ...` (high bits first, low bits last)
//!
//! ### Advanced Example
//!
//! The following trie encodes the following map. It has multiple varints and branch nodes, which
//! are all binary search with W = 0. Note that there is a value for the empty string.
//!
//! - "" → 0
//! - "axb" → 100
//! - "ayc" → 2
//! - "azd" → 3
//! - "bxe" → 4
//! - "bxefg" → 500
//! - "bxefh" → 6
//! - "bxei" → 7
//! - "bxeikl" → 8
//!
//! ```
//! use zerotrie::ZeroTrieSimpleAscii;
//!
//! let bytes = [
//!     0b10000000, // value 0
//!     0b11000010, // branch of 2
//!     b'a',       //
//!     b'b',       //
//!     13,         //
//!     0b11000011, // start of 'a' subtree: branch of 3
//!     b'x',       //
//!     b'y',       //
//!     b'z',       //
//!     3,          //
//!     5,          //
//!     b'b',       //
//!     0b10010000, // value 100 (lead)
//!     0x54,       // value 100 (trail)
//!     b'c',       //
//!     0b10000010, // value 2
//!     b'd',       //
//!     0b10000011, // value 3
//!     b'x',       // start of 'b' subtree
//!     b'e',       //
//!     0b10000100, // value 4
//!     0b11000010, // branch of 2
//!     b'f',       //
//!     b'i',       //
//!     7,          //
//!     0b11000010, // branch of 2
//!     b'g',       //
//!     b'h',       //
//!     2,          //
//!     0b10010011, // value 500 (lead)
//!     0x64,       // value 500 (trail)
//!     0b10000110, // value 6
//!     0b10000111, // value 7
//!     b'k',       //
//!     b'l',       //
//!     0b10001000, // value 8
//! ];
//!
//! let trie = ZeroTrieSimpleAscii::from_bytes(&bytes);
//!
//! // Assert that the specified items are in the map
//! assert_eq!(trie.get(b""), Some(0));
//! assert_eq!(trie.get(b"axb"), Some(100));
//! assert_eq!(trie.get(b"ayc"), Some(2));
//! assert_eq!(trie.get(b"azd"), Some(3));
//! assert_eq!(trie.get(b"bxe"), Some(4));
//! assert_eq!(trie.get(b"bxefg"), Some(500));
//! assert_eq!(trie.get(b"bxefh"), Some(6));
//! assert_eq!(trie.get(b"bxei"), Some(7));
//! assert_eq!(trie.get(b"bxeikl"), Some(8));
//!
//! // Assert that some other items are not in the map
//! assert_eq!(trie.get(b"a"), None);
//! assert_eq!(trie.get(b"bx"), None);
//! assert_eq!(trie.get(b"xba"), None);
//! ```

use crate::byte_phf::PerfectByteHashMap;
use crate::cursor::AsciiProbeResult;
use crate::helpers::*;
use crate::options::*;
use crate::varint::read_varint_meta2;
use crate::varint::read_varint_meta3;

#[cfg(feature = "alloc")]
use alloc::string::String;

/// Given a slice starting with an offset table, returns the trie for the given index.
///
/// Arguments:
/// - `trie` = a trie pointing at an offset table (after the branch node and search table)
/// - `i` = the desired index within the offset table
/// - `n` = the number of items in the offset table
/// - `w` = the width of the offset table items minus one
#[inline]
fn get_branch(mut trie: &[u8], i: usize, n: usize, mut w: usize) -> &[u8] {
    let mut p = 0usize;
    let mut q = 0usize;
    loop {
        let indices;
        (indices, trie) = trie.debug_split_at(n - 1);
        p = (p << 8)
            + if i == 0 {
                0
            } else {
                *indices.get(i - 1).debug_unwrap_or(&0) as usize
            };
        q = match indices.get(i) {
            Some(x) => (q << 8) + *x as usize,
            None => trie.len(),
        };
        if w == 0 {
            break;
        }
        w -= 1;
    }
    trie.get(p..q).debug_unwrap_or(&[])
}

/// Version of [`get_branch()`] specialized for the case `w == 0` for performance
#[inline]
fn get_branch_w0(mut trie: &[u8], i: usize, n: usize) -> &[u8] {
    let indices;
    (indices, trie) = trie.debug_split_at(n - 1);
    let p = if i == 0 {
        0
    } else {
        *indices.get(i - 1).debug_unwrap_or(&0) as usize
    };
    let q = match indices.get(i) {
        Some(x) => *x as usize,
        None => trie.len(),
    };
    trie.get(p..q).debug_unwrap_or(&[])
}

/// The node type. See the module-level docs for more explanation of the four node types.
enum NodeType {
    /// An ASCII node. Contains a single literal ASCII byte and no varint.
    Ascii,
    /// A span node. Contains a varint indicating how big the span is.
    Span,
    /// A value node. Contains a varint representing the value.
    Value,
    /// A branch node. Contains a varint of the number of output nodes, plus W in the high bits.
    Branch,
}

impl core::fmt::Debug for NodeType {
    fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
        use NodeType::*;
        f.write_str(match *self {
            Ascii => "a",
            Span => "s",
            Value => "v",
            Branch => "m",
        })
    }
}

#[inline]
fn byte_type(b: u8) -> NodeType {
    match b & 0b11100000 {
        0b10000000 => NodeType::Value,
        0b10100000 => NodeType::Span,
        0b11000000 => NodeType::Branch,
        0b11100000 => NodeType::Branch,
        _ => NodeType::Ascii,
    }
}

#[inline]
pub(crate) fn get_parameterized<T: ZeroTrieWithOptions + ?Sized>(
    mut trie: &[u8],
    mut ascii: &[u8],
) -> Option<usize> {
    loop {
        let (b, x, i, search);
        (b, trie) = trie.split_first()?;
        let byte_type = byte_type(*b);
        (x, trie) = match byte_type {
            NodeType::Ascii => (0, trie),
            NodeType::Span => {
                if matches!(T::OPTIONS.ascii_mode, AsciiMode::BinarySpans) {
                    read_varint_meta3(*b, trie)
                } else {
                    debug_assert!(false, "Span node found in ASCII trie!");
                    return None;
                }
            }
            NodeType::Value => read_varint_meta3(*b, trie),
            NodeType::Branch => read_varint_meta2(*b, trie),
        };
        if let Some((c, temp)) = ascii.split_first() {
            if matches!(byte_type, NodeType::Ascii) {
                let is_match = if matches!(T::OPTIONS.case_sensitivity, CaseSensitivity::IgnoreCase)
                {
                    b.eq_ignore_ascii_case(c)
                } else {
                    b == c
                };
                if is_match {
                    // Matched a byte
                    ascii = temp;
                    continue;
                } else {
                    // Byte that doesn't match
                    return None;
                }
            }
            if matches!(byte_type, NodeType::Value) {
                // Value node, but not at end of string
                continue;
            }
            if matches!(T::OPTIONS.ascii_mode, AsciiMode::BinarySpans)
                && matches!(byte_type, NodeType::Span)
            {
                let (trie_span, ascii_span);
                (trie_span, trie) = trie.debug_split_at(x);
                (ascii_span, ascii) = ascii.maybe_split_at(x)?;
                if trie_span == ascii_span {
                    // Matched a byte span
                    continue;
                } else {
                    // Byte span that doesn't match
                    return None;
                }
            }
            // Branch node
            let (x, w) = if x >= 256 { (x & 0xff, x >> 8) } else { (x, 0) };
            let w = if matches!(T::OPTIONS.capacity_mode, CapacityMode::Extended) {
                w
            } else {
                // See the table below regarding this assertion
                debug_assert!(w <= 3, "get: w > 3 but we assume w <= 3");
                w & 0x3
            };
            let x = if x == 0 { 256 } else { x };
            if matches!(T::OPTIONS.phf_mode, PhfMode::BinaryOnly) || x < 16 {
                // binary search
                (search, trie) = trie.debug_split_at(x);
                let bsearch_result =
                    if matches!(T::OPTIONS.case_sensitivity, CaseSensitivity::IgnoreCase) {
                        search.binary_search_by_key(&c.to_ascii_lowercase(), |x| {
                            x.to_ascii_lowercase()
                        })
                    } else {
                        search.binary_search(c)
                    };
                i = bsearch_result.ok()?;
            } else {
                // phf
                (search, trie) = trie.debug_split_at(x * 2 + 1);
                i = PerfectByteHashMap::from_store(search).get(*c)?;
            }
            trie = if w == 0 {
                get_branch_w0(trie, i, x)
            } else {
                get_branch(trie, i, x, w)
            };
            ascii = temp;
            continue;
        } else {
            if matches!(byte_type, NodeType::Value) {
                // Value node at end of string
                return Some(x);
            }
            return None;
        }
    }
}

// DISCUSS: This function is 7% faster *on aarch64* if we assert a max on w.
//
// | Bench         | No Assert, x86_64 | No Assert, aarch64 | Assertion, x86_64 | Assertion, aarch64 |
// |---------------|-------------------|--------------------|-------------------|--------------------|
// | basic         | ~187.51 ns        | ~97.586 ns         | ~199.11 ns        | ~99.236 ns         |
// | subtags_10pct | ~9.5557 µs        | ~4.8696 µs         | ~9.5779 µs        | ~4.5649 µs         |
// | subtags_full  | ~137.75 µs        | ~76.016 µs         | ~142.02 µs        | ~70.254 µs         |

/// Steps one node into the trie assuming all branch nodes are binary search and that
/// there are no span nodes.
///
/// The input-output argument `trie` starts at the original trie and ends pointing to
/// the sub-trie reachable by `c`.
#[inline]
pub(crate) fn step_parameterized<T: ZeroTrieWithOptions + ?Sized>(
    trie: &mut &[u8],
    c: u8,
) -> Option<u8> {
    // Currently, the only option `step_parameterized` supports is `CaseSensitivity::IgnoreCase`.
    // `AsciiMode::BinarySpans` is tricky because the state can no longer be simply a trie.
    // If a span node is encountered, `None` is returned later in this function.
    debug_assert!(
        matches!(T::OPTIONS.ascii_mode, AsciiMode::AsciiOnly),
        "Spans not yet implemented in step function"
    );
    // PHF can be easily implemented but the code is not yet reachable
    debug_assert!(
        matches!(T::OPTIONS.phf_mode, PhfMode::BinaryOnly),
        "PHF not yet implemented in step function"
    );
    // Extended Capacity can be easily implemented but the code is not yet reachable
    debug_assert!(
        matches!(T::OPTIONS.capacity_mode, CapacityMode::Normal),
        "Extended capacity not yet implemented in step function"
    );
    let (mut b, x, search);
    loop {
        (b, *trie) = match trie.split_first() {
            Some(v) => v,
            None => {
                // Empty trie or only a value node
                return None;
            }
        };
        match byte_type(*b) {
            NodeType::Ascii => {
                let is_match = if matches!(T::OPTIONS.case_sensitivity, CaseSensitivity::IgnoreCase)
                {
                    b.eq_ignore_ascii_case(&c)
                } else {
                    *b == c
                };
                if is_match {
                    // Matched a byte
                    return Some(*b);
                } else {
                    // Byte that doesn't match
                    *trie = &[];
                    return None;
                }
            }
            NodeType::Branch => {
                // Proceed to the branch node logic below
                (x, *trie) = read_varint_meta2(*b, trie);
                break;
            }
            NodeType::Span => {
                // Question: Should we put the trie back into a valid state?
                // Currently this code is unreachable so let's not worry about it.
                debug_assert!(false, "Span node found in ASCII trie!");
                return None;
            }
            NodeType::Value => {
                // Skip the value node and go to the next node
                (_, *trie) = read_varint_meta3(*b, trie);
                continue;
            }
        };
    }
    // Branch node
    let (x, w) = if x >= 256 { (x & 0xff, x >> 8) } else { (x, 0) };
    // See comment above regarding this assertion
    debug_assert!(w <= 3, "get: w > 3 but we assume w <= 3");
    let w = w & 0x3;
    let x = if x == 0 { 256 } else { x };
    // Always use binary search
    (search, *trie) = trie.debug_split_at(x);
    let bsearch_result = if matches!(T::OPTIONS.case_sensitivity, CaseSensitivity::IgnoreCase) {
        search.binary_search_by_key(&c.to_ascii_lowercase(), |x| x.to_ascii_lowercase())
    } else {
        search.binary_search(&c)
    };
    match bsearch_result {
        Ok(i) => {
            // Matched a byte
            *trie = if w == 0 {
                get_branch_w0(trie, i, x)
            } else {
                get_branch(trie, i, x, w)
            };
            Some(search[i])
        }
        Err(_) => {
            // Byte that doesn't match
            *trie = &[];
            None
        }
    }
}

/// Steps one node into the trie, assuming all branch nodes are binary search and that
/// there are no span nodes, using an index.
///
/// The input-output argument `trie` starts at the original trie and ends pointing to
/// the sub-trie indexed by `index`.
#[inline]
pub(crate) fn probe_parameterized<T: ZeroTrieWithOptions + ?Sized>(
    trie: &mut &[u8],
    index: usize,
) -> Option<AsciiProbeResult> {
    // Currently, the only option `step_parameterized` supports is `CaseSensitivity::IgnoreCase`.
    // `AsciiMode::BinarySpans` is tricky because the state can no longer be simply a trie.
    // If a span node is encountered, `None` is returned later in this function.
    debug_assert!(
        matches!(T::OPTIONS.ascii_mode, AsciiMode::AsciiOnly),
        "Spans not yet implemented in step function"
    );
    // PHF can be easily implemented but the code is not yet reachable
    debug_assert!(
        matches!(T::OPTIONS.phf_mode, PhfMode::BinaryOnly),
        "PHF not yet implemented in step function"
    );
    // Extended Capacity can be easily implemented but the code is not yet reachable
    debug_assert!(
        matches!(T::OPTIONS.capacity_mode, CapacityMode::Normal),
        "Extended capacity not yet implemented in step function"
    );
    let (mut b, x, search);
    loop {
        (b, *trie) = match trie.split_first() {
            Some(v) => v,
            None => {
                // Empty trie or only a value node
                return None;
            }
        };
        match byte_type(*b) {
            NodeType::Ascii => {
                if index > 0 {
                    *trie = &[];
                    return None;
                }
                return Some(AsciiProbeResult {
                    byte: *b,
                    total_siblings: 1,
                });
            }
            NodeType::Branch => {
                // Proceed to the branch node logic below
                (x, *trie) = read_varint_meta2(*b, trie);
                break;
            }
            NodeType::Span => {
                // Question: Should we put the trie back into a valid state?
                // Currently this code is unreachable so let's not worry about it.
                debug_assert!(false, "Span node found in ASCII trie!");
                return None;
            }
            NodeType::Value => {
                // Skip the value node and go to the next node
                (_, *trie) = read_varint_meta3(*b, trie);
                continue;
            }
        };
    }
    // Branch node
    let (x, w) = if x >= 256 { (x & 0xff, x >> 8) } else { (x, 0) };
    debug_assert!(u8::try_from(x).is_ok());
    let total_siblings = x as u8;
    // See comment above regarding this assertion
    debug_assert!(w <= 3, "get: w > 3 but we assume w <= 3");
    let w = w & 0x3;
    let x = if x == 0 { 256 } else { x };
    if index >= x {
        *trie = &[];
        return None;
    }
    (search, *trie) = trie.debug_split_at(x);
    *trie = if w == 0 {
        get_branch_w0(trie, index, x)
    } else {
        get_branch(trie, index, x, w)
    };
    Some(AsciiProbeResult {
        byte: search[index],
        total_siblings,
    })
}

/// Steps one node into the trie if the head node is a value node, returning the value.
/// If the head node is not a value node, no change is made.
///
/// The input-output argument `trie` starts at the original trie and ends pointing to
/// the sub-trie with the value node removed.
pub(crate) fn take_value(trie: &mut &[u8]) -> Option<usize> {
    let (b, new_trie) = trie.split_first()?;
    match byte_type(*b) {
        NodeType::Ascii | NodeType::Span | NodeType::Branch => None,
        NodeType::Value => {
            let x;
            (x, *trie) = read_varint_meta3(*b, new_trie);
            Some(x)
        }
    }
}

#[cfg(feature = "alloc")]
use alloc::vec::Vec;

/// Iterator type for walking the byte sequences contained in a ZeroTrie.
#[cfg(feature = "alloc")]
#[derive(Debug)]
pub struct ZeroTrieIterator<'a> {
    /// Whether the PHF is enabled on this trie.
    use_phf: bool,
    /// Intermediate state during iteration:
    /// 1. A trie (usually a slice of the original, bigger trie)
    /// 2. The string that leads to the trie
    /// 3. If the trie's lead node is a branch node, the current index being evaluated
    state: Vec<(&'a [u8], Vec<u8>, usize)>,
}

#[cfg(feature = "alloc")]
impl<'a> ZeroTrieIterator<'a> {
    pub(crate) fn new<S: AsRef<[u8]> + ?Sized>(store: &'a S, use_phf: bool) -> Self {
        ZeroTrieIterator {
            use_phf,
            state: alloc::vec![(store.as_ref(), alloc::vec![], 0)],
        }
    }
}

#[cfg(feature = "alloc")]
impl Iterator for ZeroTrieIterator<'_> {
    type Item = (Vec<u8>, usize);
    fn next(&mut self) -> Option<Self::Item> {
        let (mut trie, mut string, mut branch_idx);
        (trie, string, branch_idx) = self.state.pop()?;
        loop {
            let (b, x, span, search);
            let return_trie = trie;
            (b, trie) = match trie.split_first() {
                Some(tpl) => tpl,
                None => {
                    // At end of current branch; step back to the branch node.
                    // If there are no more branches, we are finished.
                    (trie, string, branch_idx) = self.state.pop()?;
                    continue;
                }
            };
            let byte_type = byte_type(*b);
            if matches!(byte_type, NodeType::Ascii) {
                string.push(*b);
                continue;
            }
            (x, trie) = match byte_type {
                NodeType::Ascii => (0, trie),
                NodeType::Span | NodeType::Value => read_varint_meta3(*b, trie),
                NodeType::Branch => read_varint_meta2(*b, trie),
            };
            if matches!(byte_type, NodeType::Span) {
                (span, trie) = trie.debug_split_at(x);
                string.extend(span);
                continue;
            }
            if matches!(byte_type, NodeType::Value) {
                let retval = string.clone();
                // Return to this position on the next step
                self.state.push((trie, string, 0));
                return Some((retval, x));
            }
            // Match node
            let (x, w) = if x >= 256 { (x & 0xff, x >> 8) } else { (x, 0) };
            let x = if x == 0 { 256 } else { x };
            if branch_idx + 1 < x {
                // Return to this branch node at the next index
                self.state
                    .push((return_trie, string.clone(), branch_idx + 1));
            }
            let byte = if x < 16 || !self.use_phf {
                // binary search
                (search, trie) = trie.debug_split_at(x);
                debug_unwrap!(search.get(branch_idx), return None)
            } else {
                // phf
                (search, trie) = trie.debug_split_at(x * 2 + 1);
                debug_unwrap!(search.get(branch_idx + x + 1), return None)
            };
            string.push(*byte);
            trie = if w == 0 {
                get_branch_w0(trie, branch_idx, x)
            } else {
                get_branch(trie, branch_idx, x, w)
            };
            branch_idx = 0;
        }
    }
}

#[cfg(feature = "alloc")]
pub(crate) fn get_iter_phf<S: AsRef<[u8]> + ?Sized>(store: &S) -> ZeroTrieIterator<'_> {
    ZeroTrieIterator::new(store, true)
}

/// # Panics
/// Panics if the trie contains non-ASCII items.
#[cfg(feature = "alloc")]
#[allow(clippy::type_complexity)]
pub(crate) fn get_iter_ascii_or_panic<S: AsRef<[u8]> + ?Sized>(
    store: &S,
) -> core::iter::Map<ZeroTrieIterator<'_>, fn((Vec<u8>, usize)) -> (String, usize)> {
    ZeroTrieIterator::new(store, false).map(|(k, v)| {
        #[allow(clippy::unwrap_used)] // in signature of function
        let ascii_str = String::from_utf8(k).unwrap();
        (ascii_str, v)
    })
}