1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).

#![allow(clippy::upper_case_acronyms)]

//! Traits over unaligned little-endian data (ULE, pronounced "yule").
//!
//! The main traits for this module are [`ULE`], [`AsULE`] and, [`VarULE`].
//!
//! See [the design doc](https://github.com/unicode-org/icu4x/blob/main/utils/zerovec/design_doc.md) for details on how these traits
//! works under the hood.
mod chars;
#[cfg(doc)]
pub mod custom;
mod encode;
mod macros;
mod multi;
mod niche;
mod option;
mod plain;
mod slices;
#[cfg(test)]
pub mod test_utils;

pub mod tuple;
pub mod tuplevar;
pub mod vartuple;
pub use chars::CharULE;
pub use encode::{encode_varule_to_box, EncodeAsVarULE};
pub use multi::MultiFieldsULE;
pub use niche::{NicheBytes, NichedOption, NichedOptionULE};
pub use option::{OptionULE, OptionVarULE};
pub use plain::RawBytesULE;

use alloc::alloc::Layout;
use alloc::borrow::ToOwned;
use alloc::boxed::Box;
use core::{any, fmt, mem, slice};

/// Fixed-width, byte-aligned data that can be cast to and from a little-endian byte slice.
///
/// If you need to implement this trait, consider using [`#[make_ule]`](crate::make_ule) or
///  [`#[derive(ULE)]`](macro@ULE) instead.
///
/// Types that are not fixed-width can implement [`VarULE`] instead.
///
/// "ULE" stands for "Unaligned little-endian"
///
/// # Safety
///
/// Safety checklist for `ULE`:
///
/// 1. The type *must not* include any uninitialized or padding bytes.
/// 2. The type must have an alignment of 1 byte.
/// 3. The impl of [`ULE::validate_bytes()`] *must* return an error if the given byte slice
///    would not represent a valid slice of this type.
/// 4. The impl of [`ULE::validate_bytes()`] *must* return an error if the given byte slice
///    cannot be used in its entirety (if its length is not a multiple of `size_of::<Self>()`).
/// 5. All other methods *must* be left with their default impl, or else implemented according to
///    their respective safety guidelines.
/// 6. Acknowledge the following note about the equality invariant.
///
/// If the ULE type is a struct only containing other ULE types (or other types which satisfy invariants 1 and 2,
/// like `[u8; N]`), invariants 1 and 2 can be achieved via `#[repr(C, packed)]` or `#[repr(transparent)]`.
///
/// # Equality invariant
///
/// A non-safety invariant is that if `Self` implements `PartialEq`, the it *must* be logically
/// equivalent to byte equality on [`Self::slice_as_bytes()`].
///
/// It may be necessary to introduce a "canonical form" of the ULE if logical equality does not
/// equal byte equality. In such a case, [`Self::validate_bytes()`] should return an error
/// for any values that are not in canonical form. For example, the decimal strings "1.23e4" and
/// "12.3e3" are logically equal, but not byte-for-byte equal, so we could define a canonical form
/// where only a single digit is allowed before `.`.
///
/// Failure to follow this invariant will cause surprising behavior in `PartialEq`, which may
/// result in unpredictable operations on `ZeroVec`, `VarZeroVec`, and `ZeroMap`.
pub unsafe trait ULE
where
    Self: Sized,
    Self: Copy + 'static,
{
    /// Validates a byte slice, `&[u8]`.
    ///
    /// If `Self` is not well-defined for all possible bit values, the bytes should be validated.
    /// If the bytes can be transmuted, *in their entirety*, to a valid slice of `Self`, then `Ok`
    /// should be returned; otherwise, `Err` should be returned.
    fn validate_bytes(bytes: &[u8]) -> Result<(), UleError>;

    /// Parses a byte slice, `&[u8]`, and return it as `&[Self]` with the same lifetime.
    ///
    /// If `Self` is not well-defined for all possible bit values, the bytes should be validated,
    /// and an error should be returned in the same cases as [`Self::validate_bytes()`].
    ///
    /// The default implementation executes [`Self::validate_bytes()`] followed by
    /// [`Self::slice_from_bytes_unchecked`].
    ///
    /// Note: The following equality should hold: `bytes.len() % size_of::<Self>() == 0`. This
    /// means that the returned slice can span the entire byte slice.
    fn parse_bytes_to_slice(bytes: &[u8]) -> Result<&[Self], UleError> {
        Self::validate_bytes(bytes)?;
        debug_assert_eq!(bytes.len() % mem::size_of::<Self>(), 0);
        Ok(unsafe { Self::slice_from_bytes_unchecked(bytes) })
    }

    /// Takes a byte slice, `&[u8]`, and return it as `&[Self]` with the same lifetime, assuming
    /// that this byte slice has previously been run through [`Self::parse_bytes_to_slice()`] with
    /// success.
    ///
    /// The default implementation performs a pointer cast to the same region of memory.
    ///
    /// # Safety
    ///
    /// ## Callers
    ///
    /// Callers of this method must take care to ensure that `bytes` was previously passed through
    /// [`Self::validate_bytes()`] with success (and was not changed since then).
    ///
    /// ## Implementors
    ///
    /// Implementations of this method may call unsafe functions to cast the pointer to the correct
    /// type, assuming the "Callers" invariant above.
    ///
    /// Keep in mind that `&[Self]` and `&[u8]` may have different lengths.
    ///
    /// Safety checklist:
    ///
    /// 1. This method *must* return the same result as [`Self::parse_bytes_to_slice()`].
    /// 2. This method *must* return a slice to the same region of memory as the argument.
    #[inline]
    unsafe fn slice_from_bytes_unchecked(bytes: &[u8]) -> &[Self] {
        let data = bytes.as_ptr();
        let len = bytes.len() / mem::size_of::<Self>();
        debug_assert_eq!(bytes.len() % mem::size_of::<Self>(), 0);
        core::slice::from_raw_parts(data as *const Self, len)
    }

    /// Given `&[Self]`, returns a `&[u8]` with the same lifetime.
    ///
    /// The default implementation performs a pointer cast to the same region of memory.
    ///
    /// # Safety
    ///
    /// Implementations of this method should call potentially unsafe functions to cast the
    /// pointer to the correct type.
    ///
    /// Keep in mind that `&[Self]` and `&[u8]` may have different lengths.
    #[inline]
    #[allow(clippy::wrong_self_convention)] // https://github.com/rust-lang/rust-clippy/issues/7219
    fn slice_as_bytes(slice: &[Self]) -> &[u8] {
        unsafe {
            slice::from_raw_parts(slice as *const [Self] as *const u8, mem::size_of_val(slice))
        }
    }
}

/// A trait for any type that has a 1:1 mapping with an unaligned little-endian (ULE) type.
///
/// If you need to implement this trait, consider using [`#[make_ule]`](crate::make_ule) instead.
pub trait AsULE: Copy {
    /// The ULE type corresponding to `Self`.
    ///
    /// Types having infallible conversions from all bit values (Plain Old Data) can use
    /// `RawBytesULE` with the desired width; for example, `u32` uses `RawBytesULE<4>`.
    ///
    /// Types that are not well-defined for all bit values should implement a custom ULE.
    type ULE: ULE;

    /// Converts from `Self` to `Self::ULE`.
    ///
    /// This function may involve byte order swapping (native-endian to little-endian).
    ///
    /// For best performance, mark your implementation of this function `#[inline]`.
    fn to_unaligned(self) -> Self::ULE;

    /// Converts from `Self::ULE` to `Self`.
    ///
    /// This function may involve byte order swapping (little-endian to native-endian).
    ///
    /// For best performance, mark your implementation of this function `#[inline]`.
    ///
    /// # Safety
    ///
    /// This function is infallible because bit validation should have occurred when `Self::ULE`
    /// was first constructed. An implementation may therefore involve an `unsafe{}` block, like
    /// `from_bytes_unchecked()`.
    fn from_unaligned(unaligned: Self::ULE) -> Self;
}

/// A type whose byte sequence equals the byte sequence of its ULE type on
/// little-endian platforms.
///
/// This enables certain performance optimizations, such as
/// [`ZeroVec::try_from_slice`](crate::ZeroVec::try_from_slice).
///
/// # Implementation safety
///
/// This trait is safe to implement if the type's ULE (as defined by `impl `[`AsULE`]` for T`)
/// has an equal byte sequence as the type itself on little-endian platforms; i.e., one where
/// `*const T` can be cast to a valid `*const T::ULE`.
pub unsafe trait EqULE: AsULE {}

/// A trait for a type where aligned slices can be cast to unaligned slices.
///
/// Auto-implemented on all types implementing [`EqULE`].
pub trait SliceAsULE
where
    Self: AsULE + Sized,
{
    /// Converts from `&[Self]` to `&[Self::ULE]` if possible.
    ///
    /// In general, this function returns `Some` on little-endian and `None` on big-endian.
    fn slice_to_unaligned(slice: &[Self]) -> Option<&[Self::ULE]>;
}

#[cfg(target_endian = "little")]
impl<T> SliceAsULE for T
where
    T: EqULE,
{
    #[inline]
    fn slice_to_unaligned(slice: &[Self]) -> Option<&[Self::ULE]> {
        // This is safe because on little-endian platforms, the byte sequence of &[T]
        // is equivalent to the byte sequence of &[T::ULE] by the contract of EqULE,
        // and &[T::ULE] has equal or looser alignment than &[T].
        let ule_slice =
            unsafe { core::slice::from_raw_parts(slice.as_ptr() as *const Self::ULE, slice.len()) };
        Some(ule_slice)
    }
}

#[cfg(not(target_endian = "little"))]
impl<T> SliceAsULE for T
where
    T: EqULE,
{
    #[inline]
    fn slice_to_unaligned(_: &[Self]) -> Option<&[Self::ULE]> {
        None
    }
}

/// Variable-width, byte-aligned data that can be cast to and from a little-endian byte slice.
///
/// If you need to implement this trait, consider using [`#[make_varule]`](crate::make_varule) or
///  [`#[derive(VarULE)]`](macro@VarULE) instead.
///
/// This trait is mostly for unsized types like `str` and `[T]`. It can be implemented on sized types;
/// however, it is much more preferable to use [`ULE`] for that purpose. The [`custom`] module contains
/// additional documentation on how this type can be implemented on custom types.
///
/// If deserialization with `VarZeroVec` is desired is recommended to implement `Deserialize` for
/// `Box<T>` (serde does not do this automatically for unsized `T`).
///
/// For convenience it is typically desired to implement [`EncodeAsVarULE`] and [`ZeroFrom`](zerofrom::ZeroFrom)
/// on some stack type to convert to and from the ULE type efficiently when necessary.
///
/// # Safety
///
/// Safety checklist for `VarULE`:
///
/// 1. The type *must not* include any uninitialized or padding bytes.
/// 2. The type must have an alignment of 1 byte.
/// 3. The impl of [`VarULE::validate_bytes()`] *must* return an error if the given byte slice
///    would not represent a valid slice of this type.
/// 4. The impl of [`VarULE::validate_bytes()`] *must* return an error if the given byte slice
///    cannot be used in its entirety.
/// 5. The impl of [`VarULE::from_bytes_unchecked()`] must produce a reference to the same
///    underlying data assuming that the given bytes previously passed validation.
/// 6. All other methods *must* be left with their default impl, or else implemented according to
///    their respective safety guidelines.
/// 7. Acknowledge the following note about the equality invariant.
///
/// If the ULE type is a struct only containing other ULE/VarULE types (or other types which satisfy invariants 1 and 2,
/// like `[u8; N]`), invariants 1 and 2 can be achieved via `#[repr(C, packed)]` or `#[repr(transparent)]`.
///
/// # Equality invariant
///
/// A non-safety invariant is that if `Self` implements `PartialEq`, the it *must* be logically
/// equivalent to byte equality on [`Self::as_bytes()`].
///
/// It may be necessary to introduce a "canonical form" of the ULE if logical equality does not
/// equal byte equality. In such a case, [`Self::validate_bytes()`] should return an error
/// for any values that are not in canonical form. For example, the decimal strings "1.23e4" and
/// "12.3e3" are logically equal, but not byte-for-byte equal, so we could define a canonical form
/// where only a single digit is allowed before `.`.
///
/// There may also be cases where a `VarULE` has muiltiple canonical forms, such as a faster
/// version and a smaller version. The cleanest way to handle this case would be separate types.
/// However, if this is not feasible, then the application should ensure that the data it is
/// deserializing is in the expected form. For example, if the data is being loaded from an
/// external source, then requests could carry information about the expected form of the data.
///
/// Failure to follow this invariant will cause surprising behavior in `PartialEq`, which may
/// result in unpredictable operations on `ZeroVec`, `VarZeroVec`, and `ZeroMap`.
pub unsafe trait VarULE: 'static {
    /// Validates a byte slice, `&[u8]`.
    ///
    /// If `Self` is not well-defined for all possible bit values, the bytes should be validated.
    /// If the bytes can be transmuted, *in their entirety*, to a valid `&Self`, then `Ok` should
    /// be returned; otherwise, `Self::Error` should be returned.
    fn validate_bytes(_bytes: &[u8]) -> Result<(), UleError>;

    /// Parses a byte slice, `&[u8]`, and return it as `&Self` with the same lifetime.
    ///
    /// If `Self` is not well-defined for all possible bit values, the bytes should be validated,
    /// and an error should be returned in the same cases as [`Self::validate_bytes()`].
    ///
    /// The default implementation executes [`Self::validate_bytes()`] followed by
    /// [`Self::from_bytes_unchecked`].
    ///
    /// Note: The following equality should hold: `size_of_val(result) == size_of_val(bytes)`,
    /// where `result` is the successful return value of the method. This means that the return
    /// value spans the entire byte slice.
    fn parse_bytes(bytes: &[u8]) -> Result<&Self, UleError> {
        Self::validate_bytes(bytes)?;
        let result = unsafe { Self::from_bytes_unchecked(bytes) };
        debug_assert_eq!(mem::size_of_val(result), mem::size_of_val(bytes));
        Ok(result)
    }

    /// Takes a byte slice, `&[u8]`, and return it as `&Self` with the same lifetime, assuming
    /// that this byte slice has previously been run through [`Self::parse_bytes()`] with
    /// success.
    ///
    /// # Safety
    ///
    /// ## Callers
    ///
    /// Callers of this method must take care to ensure that `bytes` was previously passed through
    /// [`Self::validate_bytes()`] with success (and was not changed since then).
    ///
    /// ## Implementors
    ///
    /// Implementations of this method may call unsafe functions to cast the pointer to the correct
    /// type, assuming the "Callers" invariant above.
    ///
    /// Safety checklist:
    ///
    /// 1. This method *must* return the same result as [`Self::parse_bytes()`].
    /// 2. This method *must* return a slice to the same region of memory as the argument.
    unsafe fn from_bytes_unchecked(bytes: &[u8]) -> &Self;

    /// Given `&Self`, returns a `&[u8]` with the same lifetime.
    ///
    /// The default implementation performs a pointer cast to the same region of memory.
    ///
    /// # Safety
    ///
    /// Implementations of this method should call potentially unsafe functions to cast the
    /// pointer to the correct type.
    #[inline]
    fn as_bytes(&self) -> &[u8] {
        unsafe { slice::from_raw_parts(self as *const Self as *const u8, mem::size_of_val(self)) }
    }

    /// Allocate on the heap as a `Box<T>`
    #[inline]
    fn to_boxed(&self) -> Box<Self> {
        let bytesvec = self.as_bytes().to_owned().into_boxed_slice();
        let bytesvec = mem::ManuallyDrop::new(bytesvec);
        unsafe {
            // Get the pointer representation
            let ptr: *mut Self = Self::from_bytes_unchecked(&bytesvec) as *const Self as *mut Self;
            assert_eq!(Layout::for_value(&*ptr), Layout::for_value(&**bytesvec));
            // Transmute the pointer to an owned pointer
            Box::from_raw(ptr)
        }
    }
}

// Proc macro reexports
//
// These exist so that our docs can use intra-doc links.
// Due to quirks of how rustdoc does documentation on reexports, these must be in this module and not reexported from
// a submodule

/// Custom derive for [`ULE`].
///
/// This can be attached to [`Copy`] structs containing only [`ULE`] types.
///
/// Most of the time, it is recommended one use [`#[make_ule]`](crate::make_ule) instead of defining
/// a custom ULE type.
#[cfg(feature = "derive")]
pub use zerovec_derive::ULE;

/// Custom derive for [`VarULE`]
///
/// This can be attached to structs containing only [`ULE`] types with one [`VarULE`] type at the end.
///
/// Most of the time, it is recommended one use [`#[make_varule]`](crate::make_varule) instead of defining
/// a custom [`VarULE`] type.
#[cfg(feature = "derive")]
pub use zerovec_derive::VarULE;

/// An error type to be used for decoding slices of ULE types
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
#[non_exhaustive]
pub enum UleError {
    /// Attempted to parse a buffer into a slice of the given ULE type but its
    /// length was not compatible.
    ///
    /// Typically created by a [`ULE`] impl via [`UleError::length()`].
    ///
    /// [`ULE`]: crate::ule::ULE
    InvalidLength { ty: &'static str, len: usize },
    /// The byte sequence provided for `ty` failed to parse correctly in the
    /// given ULE type.
    ///
    /// Typically created by a [`ULE`] impl via [`UleError::parse()`].
    ///
    /// [`ULE`]: crate::ule::ULE
    ParseError { ty: &'static str },
}

impl fmt::Display for UleError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> Result<(), fmt::Error> {
        match *self {
            UleError::InvalidLength { ty, len } => {
                write!(f, "Invalid length {len} for slice of type {ty}")
            }
            UleError::ParseError { ty } => {
                write!(f, "Could not parse bytes to slice of type {ty}")
            }
        }
    }
}

impl UleError {
    /// Construct a parse error for the given type
    pub fn parse<T: ?Sized + 'static>() -> UleError {
        UleError::ParseError {
            ty: any::type_name::<T>(),
        }
    }

    /// Construct an "invalid length" error for the given type and length
    pub fn length<T: ?Sized + 'static>(len: usize) -> UleError {
        UleError::InvalidLength {
            ty: any::type_name::<T>(),
            len,
        }
    }
}

#[cfg(feature = "std")]
impl ::std::error::Error for UleError {}