icu_experimental/transliterate/compile/rule_group_agg.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327
// This file is part of ICU4X. For terms of use, please see the file
// called LICENSE at the top level of the ICU4X source tree
// (online at: https://github.com/unicode-org/icu4x/blob/main/LICENSE ).
//! This module contains the logic for aggregating rules into groups.
//! Due to incompatible orders (see comment on `ReverseRuleGroupAggregator`), we need separate
//! aggregators for forward and reverse directions.
//!
//! These aggregators both accept source-order (!) `parse::Rule`s and aggregate them into the rule
//! groups that the data struct [`RuleBasedTransliterator`](icu::experimental::transliterate::provider::RuleBasedTransliterator)
//! semantically expects. A later step converts these into the actual zero-copy format.
//! They also transform the bidirectional `parse::Rule`s into a unidirectional version.
// note: the aggregators currently work in a one-`parse::Rule`-at-a-time fashion, but really, they
// could also receive the full `&[parse::Rule]` slice. with some careful index handling, some
// allocations could be avoided.
use super::*;
use alloc::borrow::Cow;
use alloc::collections::VecDeque;
use alloc::vec;
// parse::Rule::Conversion but unidirectional
#[derive(Debug, Clone)]
pub(crate) struct UniConversionRule<'p> {
pub(crate) ante: &'p [parse::Element],
pub(crate) key: &'p [parse::Element],
pub(crate) post: &'p [parse::Element],
pub(crate) replacement: &'p [parse::Element],
}
// transform + conversion rule groups for a single direction
pub(crate) type RuleGroups<'p> = Vec<(Vec<Cow<'p, parse::SingleId>>, Vec<UniConversionRule<'p>>)>;
// an intermediate enum for use in the aggregators
enum UniRule<'p> {
Conversion(UniConversionRule<'p>),
Transform(Cow<'p, parse::SingleId>),
}
#[derive(Debug, Clone)]
pub(crate) struct ForwardRuleGroupAggregator<'p> {
current: ForwardRuleGroup<'p>,
// the forward aggregator can use the final type directly, as source-order is equivalent to
// forward-order.
groups: RuleGroups<'p>,
// the transform_group of a group pair appears first
preceding_transform_group: Option<Vec<Cow<'p, parse::SingleId>>>,
}
impl<'p> ForwardRuleGroupAggregator<'p> {
pub(crate) fn new() -> Self {
Self {
// this is a somewhat important first group.
// we want &[(transform_group), (conversion_group)] in the end, and because we iterate
// in source-order, the first element of that is a transform_group.
current: ForwardRuleGroup::Transform(Vec::new()),
groups: Vec::new(),
preceding_transform_group: None,
}
}
pub(crate) fn push(&mut self, rule: &'p parse::Rule) {
match rule {
parse::Rule::Conversion(source_half, dir, target_half) => {
if !dir.permits(Direction::Forward) {
return;
}
let ante = &source_half.ante;
let key = &source_half.key;
let post = &source_half.post;
let replacement = &target_half.key;
let rule = UniConversionRule {
ante,
key,
post,
replacement,
};
let finished_group = self.current.push(UniRule::Conversion(rule));
if let Some(finished_group) = finished_group {
self.push_rule_group(finished_group);
}
}
parse::Rule::Transform(fwd, _) => {
let finished_group = self.current.push(UniRule::Transform(Cow::Borrowed(fwd)));
if let Some(finished_group) = finished_group {
self.push_rule_group(finished_group);
}
}
parse::Rule::VariableDefinition(..) => {
// variable definitions are handled in a previous step
}
parse::Rule::GlobalFilter(..) | parse::Rule::GlobalInverseFilter(..) => {
// global filters are handled in a previous step
}
}
}
fn push_rule_group(&mut self, group: ForwardRuleGroup<'p>) {
match group {
ForwardRuleGroup::Transform(transform_group) => {
// because ForwardRuleGroup returns a different kind of group every time,
// the previous group must have been a conversion group which pushed the
// finished group pair into self.groups.
debug_assert!(self.preceding_transform_group.is_none());
self.preceding_transform_group = Some(transform_group);
}
ForwardRuleGroup::Conversion(conversion_group) => {
// unwrap is necessary if the first source-order rule group is a conversion group
let associated_transform_group =
self.preceding_transform_group.take().unwrap_or_default();
self.groups
.push((associated_transform_group, conversion_group));
}
}
}
pub(crate) fn finalize(mut self) -> RuleGroups<'p> {
// push the current group
// note: refactoring could get rid of clone
self.push_rule_group(self.current.clone());
// push any remaining group pairs
if let Some(transform_group) = self.preceding_transform_group.take() {
self.groups.push((transform_group, Vec::new()));
}
self.groups
}
}
// Represents a non-empty rule group for the forward direction.
#[derive(Debug, Clone)]
enum ForwardRuleGroup<'p> {
Conversion(Vec<UniConversionRule<'p>>),
Transform(Vec<Cow<'p, parse::SingleId>>),
}
impl<'p> ForwardRuleGroup<'p> {
fn new_conversion(rule: UniConversionRule<'p>) -> Self {
Self::Conversion(vec![rule])
}
fn new_transform(rule: Cow<'p, parse::SingleId>) -> Self {
Self::Transform(vec![rule])
}
// if the group is full return self, and push the rule into a new group
fn push(&mut self, rule: UniRule<'p>) -> Option<Self> {
// necessary reborrow for mem::replace
match (&mut *self, rule) {
(Self::Conversion(group), UniRule::Conversion(rule)) => {
group.push(rule);
None
}
(Self::Transform(group), UniRule::Transform(rule)) => {
group.push(rule);
None
}
(Self::Conversion(_), UniRule::Transform(new_rule)) => {
Some(core::mem::replace(self, Self::new_transform(new_rule)))
}
(Self::Transform(_), UniRule::Conversion(new_rule)) => {
Some(core::mem::replace(self, Self::new_conversion(new_rule)))
}
}
}
}
// Rules will be pushed in source-order (i.e., forward order), which means we have to be careful
// in which order we aggregate them. Example: (T = transform rule, C = conversion rule)
// T1 T2 C1 C2 T3 C3 C4 T4 T5
// should be aggregated as
// (T5, T4), (C3, C4), (T3), (C1, C2), (T2, T1) (assuming all rules apply to the reverse direction)
// note in particular the discrepancy between the order of contiguous T's and contiguous C's:
// contiguous C's keep the source order, but contiguous T's are reversed. Also the overall order
// is reversed, of course.
//
// We do this by using VecDeque, push_front, and make_contiguous in the end.
#[derive(Debug, Clone)]
pub(crate) struct ReverseRuleGroupAggregator<'p> {
current: ReverseRuleGroup<'p>,
// VecDeque because we encounter groups in source-order, but we want to aggregate them in
// reverse-order.
groups: VecDeque<(Vec<Cow<'p, parse::SingleId>>, Vec<UniConversionRule<'p>>)>,
// the conversion_group of a group pair appears first due to the reverse order
preceding_conversion_group: Option<Vec<UniConversionRule<'p>>>,
}
impl<'p> ReverseRuleGroupAggregator<'p> {
pub(crate) fn new() -> Self {
Self {
// this is a somewhat important first group.
// we want &[(transform_group), (conversion_group)] in the end, and because we iterate
// in opposite order, the last element of that slice is a conversion_group.
current: ReverseRuleGroup::Conversion(Vec::new()),
groups: VecDeque::new(),
preceding_conversion_group: None,
}
}
pub(crate) fn push(&mut self, rule: &'p parse::Rule) {
match rule {
parse::Rule::Conversion(target_half, dir, source_half) => {
if !dir.permits(Direction::Reverse) {
return;
}
let ante = &source_half.ante;
let key = &source_half.key;
let post = &source_half.post;
let replacement = &target_half.key;
let rule = UniConversionRule {
ante,
key,
post,
replacement,
};
let finished_group = self.current.push(UniRule::Conversion(rule));
if let Some(finished_group) = finished_group {
self.push_rule_group(finished_group);
}
}
parse::Rule::Transform(fwd, rev) => {
let rev = rev.clone().unwrap_or_else(|| fwd.clone().reverse());
let finished_group = self.current.push(UniRule::Transform(Cow::Owned(rev)));
if let Some(finished_group) = finished_group {
self.push_rule_group(finished_group);
}
}
parse::Rule::VariableDefinition(..) => {
// variable definitions are handled in a previous step
}
parse::Rule::GlobalFilter(..) | parse::Rule::GlobalInverseFilter(..) => {
// global filters are handled in a previous step
}
}
}
fn push_rule_group(&mut self, group: ReverseRuleGroup<'p>) {
match group {
ReverseRuleGroup::Conversion(conv_group) => {
// because ReverseRuleGroup returns a different kind of group every time,
// the previous group must have been a transform group which pushed the
// finished group pair into self.groups.
debug_assert!(self.preceding_conversion_group.is_none());
self.preceding_conversion_group = Some(conv_group);
}
ReverseRuleGroup::Transform(transform_group) => {
// unwrap is necessary if the first source-order rule group is a transform group
let associated_conv_group =
self.preceding_conversion_group.take().unwrap_or_default();
let vec_transform_group = transform_group.into(); // non-allocating conversion
self.groups
.push_front((vec_transform_group, associated_conv_group));
}
}
}
pub(crate) fn finalize(mut self) -> RuleGroups<'p> {
// push the current group
// note: refactoring could get rid of clone
self.push_rule_group(self.current.clone());
// push any remaining group pairs
if let Some(conv_group) = self.preceding_conversion_group.take() {
// a trailing conversion group in source order is the same as having a conversion
// group as the first in-order group. we can just prepend an empty transform group.
self.groups.push_front((Vec::new(), conv_group));
}
self.groups.into() // non-allocating conversion
}
}
// Represents a non-empty rule group for the reverse direction.
#[derive(Debug, Clone)]
enum ReverseRuleGroup<'p> {
// because contiguous C's are aggregated in source-order, we can just use a Vec
Conversion(Vec<UniConversionRule<'p>>),
// but contiguous T's are aggregated in reverse-order, so we need to use a VecDeque and push_front
Transform(VecDeque<Cow<'p, parse::SingleId>>),
}
impl Default for ReverseRuleGroup<'_> {
fn default() -> Self {
Self::Conversion(Vec::new())
}
}
impl<'p> ReverseRuleGroup<'p> {
fn new_conversion(rule: UniConversionRule<'p>) -> Self {
Self::Conversion(vec![rule])
}
fn new_transform(rule: Cow<'p, parse::SingleId>) -> Self {
let mut group = VecDeque::new();
group.push_front(rule);
Self::Transform(group)
}
fn push(&mut self, rule: UniRule<'p>) -> Option<Self> {
// necessary reborrow for mem::replace
match (&mut *self, rule) {
(Self::Conversion(group), UniRule::Conversion(rule)) => {
group.push(rule);
None
}
(Self::Transform(group), UniRule::Transform(rule)) => {
// we receive rules via `push` in source-order, which is the opposite order we want,
// so we push_front.
group.push_front(rule);
None
}
(Self::Conversion(_), UniRule::Transform(new_rule)) => {
Some(core::mem::replace(self, Self::new_transform(new_rule)))
}
(Self::Transform(_), UniRule::Conversion(new_rule)) => {
Some(core::mem::replace(self, Self::new_conversion(new_rule)))
}
}
}
}